Skip to main content
Log in

A Sonic Boom from a Thin Body and Local Heating Regions of an Incoming Supersonic Flow

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The problem of the sonic boom from a thin body and local heating region of an incoming supersonic flow is solved numerically. The Mach number of the incoming air flow is 2. Calculations are performed using the combined method of “phantom bodies.” The results of calculations show that local heating of the incoming flow can reduce the level of the sonic boom. The level of the sonic boom depends on the number of local heating regions in the incoming flow. For a single local heating region, the level of the sonic boom can be reduced by 20% as compared to the level of sonic boom from a body in a cold flow. On the other hand, the heating of the incoming flow in two heating regions reduces the level of the sonic boom by more than 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. S. Miller and H. W. Carlson, NASA TN D-5582: A Study of the Application of Heat or Force Fields to the Sonic-Boom-Minimization Problem (NASA, Washington, 1969).

    Google Scholar 

  2. N.A. Gerasimov and V.S. Sukhomlinov, Tech. Phys. 55 (1), 33 (2010). https://doi.org/10.1134/S1063784210010068

    Article  Google Scholar 

  3. N. A. Gerasimov and V. S. Sukhomlinov, Tech. Phys. 55 (11), 1553 (2010). https://doi.org/10.1134/S1063784210110022

    Article  Google Scholar 

  4. J. K. Riley, US Patent 5,263,661 (1993).

  5. S. H. Zaidi, M. N. Shneider, and R. B. Miles, AIAA J. 42 (2), 326 (2004). https://doi.org/10.2514/1.9097

    Article  ADS  Google Scholar 

  6. Y. Sun and H. Smith, Prog. Aerosp. Sci. 90, 12 (2017). https://doi.org/10.1016/j.paerosci.2016.12.003

    Article  Google Scholar 

  7. A. V. Potapkin and Yu. N. Yudintsev, Uchen. Zap. TsAGI 14 (4), 26 (1983).

    Google Scholar 

  8. A. V. Potapkin, T. A. Korotaeva, D. Yu. Moskvichev, A. P. Shashkin, A. A. Maslov, J. S. Silkey, and F. W. Roos, “An advanced approach for the far-field sonic boom prediction,” in Proc. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (January 5–8, 2009, Orlando, Florida), AIAA 2009-1056. https://doi.org/10.2514/6.2009-1056

  9. A. V. Potapkin and D. Yu. Moskvichev, J. Appl. Mech. Tech. Phys. 52 (2), 169 (2011). https://doi.org/10.1134/S0021894411020027

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Yamashita and K. Suzuki, AIAA J. 54 (10), 3223 (2016). https://doi.org/10.2514/1.J054581

    Article  ADS  Google Scholar 

  11. L. D. Landau, J. Phys. USSR 9, 496 (1945).

    Google Scholar 

  12. G. B. Whitham, Commun. Pure Appl. Math. 5 (3), 301 (1952). https://doi.org/10.1002/cpa.3160050305

    Article  MathSciNet  Google Scholar 

  13. G. B. Whitham, J. Fluid Mech. 1 (3), 290 (1956). https://doi.org/10.1017/S0022112056000172

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Sambasiva Rao, Aeronaut. Q. 7 (1), 21 (1956). https://doi.org/10.1017/S0001925900010118

    Article  MathSciNet  Google Scholar 

  15. W. D. Hayes, R. C. Haefeli, and H. E. Kulsrud, NASA CR-1299: Sonic Boom Propagation in a Stratified Atmosphere, with Computer Program (NASA, Washington, 1969).

    Google Scholar 

  16. A. V. Potapkin and D. Yu. Moskvichev, Shock Waves 24 (4), 429 (2014). https://doi.org/10.1007/s00193-014-0503-x

    Article  ADS  Google Scholar 

  17. A. V. Potapkin and D. Yu. Moskvichev, Shock Waves 28 (6), 1239 (2018). https://doi.org/10.1007/s00193-018-0817-1

    Article  ADS  Google Scholar 

  18. S. K. Godunov, Numerical Methods for Solving Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  19. A. P. Krasil’shchikov and L. P. Gur’yashkin, Experimental Investigations of Bodies of Rotation in Hypersonic Flows (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Program of Fundamental Research of State Academies of Sciences for 2013—2020, project no. AAAA-A17-117030610126-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Potapkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapkin, A.V., Moskvichev, D.Y. A Sonic Boom from a Thin Body and Local Heating Regions of an Incoming Supersonic Flow. Tech. Phys. 66, 648–657 (2021). https://doi.org/10.1134/S1063784221040162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221040162

Navigation