Skip to main content
Log in

Synthesis of Thin Niobium Films on Silicon and Study of Their Superconducting Properties in the Dimensional Crossover Region

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Niobium films with a thickness of 4–100 nm are synthesized on a silicon substrate under ultrahigh vacuum conditions. Measurements of the electrical resistance show a high superconducting transition temperature Tc in the range of 4.7–9.1 K and record-breaking small transition widths ΔTc in the range of 260–11 m. The dependences of Tc and ΔTc on the magnetic field are investigated, and the superconducting coherence lengths and mean free paths of conduction electrons for different thicknesses of the synthesized films are determined. A significant influence of the magnetic field on ΔTc is found, which reveals the transition from three- to two-dimensional superconductivity at thicknesses below 10 nm. The dependences of Tc and ΔTc on the thickness of the films and the magnitude of the magnetic field are discussed within the framework of existing theories of superconductivity in thin films of superconducting metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. K. Tolpygo, Low Temp. Phys. 42, 361 (2016). https://doi.org/10.1063/1.4948618

    Article  ADS  Google Scholar 

  2. I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy, M. Yu. Kupriyanov, A. L. Gudkov, and A. S. Sidorenko, Beilstein J. Nanotechnol. 8, 2689 (2017). https://doi.org/10.3762/bjnano.8.269

    Article  Google Scholar 

  3. Ch. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).

    MATH  Google Scholar 

  4. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).

    Google Scholar 

  5. D. Stamopoulos, A. Speliotis, and D. Niarchos, Supercond. Sci. Technol. 17 (11), 1261 (2004). https://doi.org/10.1088/0953-2048/17/11/006

    Article  ADS  Google Scholar 

  6. N. Pinto, S. J. Rezvani, A. Perali, L. Flammia, M. V. Milošević, M. Fretto, C. Cassiago, and N. De Leo, Sci. Rep. 8 (1), 1 (2018). https://doi.org/10.1038/s41598-018-22983-6

    Article  Google Scholar 

  7. A. S. Sidorenko, V. I. Zdravkov, A. Prepelitsa, C. Helbig, Y. Luo, S. Gsell, M. Schreck, S. Klimm, S. Horn, L. R. Tagirov, and R. Tidecks, Ann. Phys. (Berlin, Ger.) 12 (1–2), 37 (2003). https://doi.org/10.1002/andp.200310005

  8. A. Gubin, K. Il’in, S. Vitusevich, M. Siegel, and N. Klein, Phys. Rev. B 72, 064503 (2005). https://doi.org/10.1103/PhysRevB.72.06450

    Article  ADS  Google Scholar 

  9. V. Zdravkov, A. Sidorenko, G. Obermeier, S. Gsell, M. Schreck, C. Müller, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. Lett. 97 (5), 057004 (2006). https://doi.org/10.1103/PhysRevLett.97.057004

    Article  ADS  Google Scholar 

  10. C. Cirillo, A. Rusanov, C. Bell, and J. Aarts, Phys. Rev. B 75, 174510 (2007). https://doi.org/10.1103/PhysRevB.75.174510

    Article  ADS  Google Scholar 

  11. Th. R. Lemberger, I. Hetel, J. W. Knepper, and F. Y. Yang, Phys. Rev. B 76, 094515 (2007). https://doi.org/10.1103/PhysRevB.76.094515

    Article  ADS  Google Scholar 

  12. V. I. Zdravkov, J. Kehrle, G. Obermeier, S. Gsell, M. Schreck, C. Müller, H.-A. Krug von Nidda, J. Lindner, J. Moosburger-Will, E. Nold, R. Morari, V. V. Ryazanov, A. S. Sidorenko, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. B 82 (21), 054517 (2010). https://doi.org/10.1103/PhysRevB.82.054517

    Article  ADS  Google Scholar 

  13. A. M. Finkel’stein, Physica B 197, 636 (1994). https://doi.org/10.1016/0921-4526(94)90267-4

    Article  ADS  Google Scholar 

  14. A. M. Finkel’stein, J. Phys. Colloq. 49, 1173 (1988). https://doi.org/10.1051/jphyscol:19888539

    Article  Google Scholar 

  15. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966). https://doi.org/10.1103/PhysRevLett.17.1133

    Article  ADS  Google Scholar 

  16. K. Maki, Phys. Phys. Fiz. 1 (1), 21 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.21

    Article  MathSciNet  Google Scholar 

  17. A. I. Larkin, Sov. Phys.-JETP 21 (1), 153 (1965).

    ADS  Google Scholar 

  18. C. Delacour, L. Ortega, M. Faucher, T. Crozes, T. Fournier, B. Pannetier, and V. Bouchiat, Phys. Rev. B 83, 144504 (2011). https://doi.org/10.1103/PhysRevB.83.144504

    Article  ADS  Google Scholar 

  19. L. G. Aslamazov and A. I. Larkin, Sov. Phys. Solid State 10 (4), 875 (1968).

    Google Scholar 

  20. K. Maki, Prog. Theor. Phys. 40 (2), 193 (1968). https://doi.org/10.1143/PTP.40.193

    Article  ADS  Google Scholar 

  21. S. Thompson, Phys. Rev. B 1, 327 (1970). https://doi.org/10.1103/PhysRevB.1.327

    Article  ADS  Google Scholar 

  22. M. Yu. Reizer, Phys. Rev. B 45, 12949 (1992). https://doi.org/10.1103/PhysRevB.45.12949

    Article  ADS  Google Scholar 

  23. M. H. Theunissen and P. H. Kes, Phys. Rev. B 55, 15183 (1997). https://doi.org/10.1103/PhysRevB.55.15183

    Article  ADS  Google Scholar 

  24. A. I. Larkin and A. A. Varlamov, “Fluctuation phenomena in superconductors,” in Superconductivity. Conventional and Unconventional Superconductors, Ed. by K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2008), Chap. 10.

    Google Scholar 

  25. A. Zeinali, T. Golod, and V. M. Krasnov, Phys. Rev. B 94, 214506 (2016). https://doi.org/10.1103/PhysRevB.94.214506

    Article  ADS  Google Scholar 

  26. P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O. G. Schmidt, and B. Büchner, Appl. Phys. Lett. 97, 102505 (2010). https://doi.org/10.1063/1.3486687

    Article  ADS  Google Scholar 

  27. V. I. Zdravkov, D. Lenk, R. Morari, A. Ullrich, G. Obermeier, C. Müller, H. A. Krug von Nidda, A. S. Sidorenko, S. Horn, R. Tidecks, and L. R. Tagirov, Appl. Phys. Lett. 103, 062604 (2013). https://doi.org/10.1063/1.4818266

    Article  ADS  Google Scholar 

  28. D. Lenk, R. Morari, V. I. Zdravkov, A. Ullrich, G. Obermeier, C. Müller, A. S. Sidorenko, H. A. Krug von Nidda, S. Horn, L. R. Tagirov, and R. Tidecks, Phys. Rev. B 96, 184521 (2017). https://doi.org/10.1103/PhysRevB.96.184521

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Russian Foundation for Basic Research (project no. 18-32-01041 mol_a) using the equipment of the Federal Center for Collective Use of FHI of Kazan Federal University and the Interdisciplinary Center for Analytical Microscopy of Kazan Federal University. The work of L.R. Tagirov was supported by a state assignment to the Federal Research Center of Kazan Scientific Center of the Russian Academy of Sciences, no. АААА-А18-118030690040-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Yanilkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanilkin, I.V., Gumarov, A.I., Rogov, A.M. et al. Synthesis of Thin Niobium Films on Silicon and Study of Their Superconducting Properties in the Dimensional Crossover Region. Tech. Phys. 66, 263–268 (2021). https://doi.org/10.1134/S1063784221020249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221020249

Navigation