Skip to main content
Log in

Obtaining of Smooth High-Precision Surfaces by the Mechanical Lapping Method

  • EXPERIMENTAL INSTRUMENTS AND TECHNIQUE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We describe in detail a method for obtaining high-precision smooth spherical substrates using mechanical lapping and metrology used for these purposes. We consider a modified version of a two-probe interferometer with a diffraction reference wave, which ensures leveling of the intensities of the arms of the interferometer and rearrangement of the working aperture without instrument resetting. We report on the experimental results obtained during lapping of a concave spherical fused silica substrate using this technique with numerical aperture NA = 0.30, which has been prepared by traditional deep grinding–polishing. The initial characteristics of the substrate are the root-mean-square shape error of 36 nm (~λ/20) and effective roughness σeff = 1.1 nm in the spatial frequency range of 0.025–65 μm–1. After substrate lapping, the surface parameters were improved to a root-mean-square error of 3.3 nm (~ λ/200) and σeff = 0.26 nm. We have analyzed the effect of the grain size in suspension on the roughness and shape of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. O. Wood, J. Arnold, T. Brunner, et al., Proc. SPIE 8322, 832203 (2012).

    Article  Google Scholar 

  2. N. Mark and S. Wurm, Adv. Opt. Technol. 4 (4), 235 (2015). https://doi.org/10.1515/aot-2015-0036

    Article  ADS  Google Scholar 

  3. B. Wu and A. Kumar, Appl. Phys. Rev. 1 (1), 011104 (2014). https://doi.org/10.1063/1.4863412

    Article  ADS  Google Scholar 

  4. S.-S. Kim, R. Chalykh, H. Kim, et al., Proc. SPIE 10143, 1014306 (2017). https://doi.org/10.1117/12.2264043

    Article  Google Scholar 

  5. L. Golub, G. Nystrom, M. Herant, K. Kalata, and I. Lovas, Nature 344, 842 (1990).

    Article  ADS  Google Scholar 

  6. T. Kosugi, K. Matsuzaki, T. Sakao, et al., Sol. Phys. 243 (1), 3 (2007).

    Article  ADS  Google Scholar 

  7. W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin, Sol. Phys. 275 (1–2), 3 (2012).

    Article  ADS  Google Scholar 

  8. M. L. Kaiser, T. A. Kucera, J. M. Davila, O. C. St. Cyr, M. Guhathakurta, and E. Christian, Space Sci. Rev. 13 (1–4), 5 (2008).

    Article  ADS  Google Scholar 

  9. K. Kobayashi, J. Cirtain, A. R. Winebarger, et al., Sol. Phys. 289 (11), 4393 (2014).

    Article  ADS  Google Scholar 

  10. J. Kirz, C. Jacobsen, and M. Howells, Rev. Biophys. 28, 130 (1995).

    Article  Google Scholar 

  11. P. A. C. Takman, H. Stollberg, J. A. Johansson, et al., J. Microsc. 226, 175 (2007).

    Article  MathSciNet  Google Scholar 

  12. M. Bertilson, O. von Hofsten, U. Vogt, et al., Opt. Express 17, 11057 (2009).

    Article  ADS  Google Scholar 

  13. S. Rehbein, S. Heim, P. Guttmann, et al., Phys. Rev. Lett. 103 (11), 110801 (2009).

    Article  ADS  Google Scholar 

  14. A. D. Akhsakhalyan, E. B. Kluenkov, and A. Ya. Lopatin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11 (1), 1 (2017).

    Article  Google Scholar 

  15. G. Admans, P. Berkvens, A. Kaprolat, and J. -L. Revol, ESRF Upgrade Programme Phase II (2015–2022). Technical Design Study (Imprimerie de Pont de Claix, 2014). www.esrf.eu/Apache_files/Upgrade/ESRF-orange-book.pdf

  16. H. Thiess, H. Lasser, and F. Siewert, Nucl. Instrum. Methods Phys. Res., Sect. A 616 (2-3), 157 (2010). https://doi.org/10.1016/j.nima.2009.10.077

    Article  Google Scholar 

  17. V. A. Smirnov, Optical Glass Processing, 3rd ed. (Leningrad, Mashinostroenie, 1980) [in Russian].

    Google Scholar 

  18. N. I. Chkhalo, I. A. Kaskov, I. V. Malyshev, et al., Precis. Eng. 48, 338 (2017). https://doi.org/10.1016/j.precisioneng.2017.01.004

    Article  Google Scholar 

  19. M. N. Brychikhin, N. I. Chkhalo, and Ya. O. Eikhorn, Appl. Opt. 55 (16), 4430 (2016).

    Article  ADS  Google Scholar 

  20. N. I. Chkhalo, I. V. Malyshev, A. E. Pestov, et al., J. Astron. Telesc. Instrum. Syst. 4 (1), 014003 (2018).

    ADS  Google Scholar 

  21. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, New York, 1992).

    Google Scholar 

  22. I. V. Malyshev, A. E. Pestov, V. N. Polkovnikov, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12 (6), 1253 (2018).

    Article  Google Scholar 

  23. U. Dinger, F. Eisert, H. Lasser, et al., Proc. SPIE 4146, 35 (2000). https://doi.org/10.1117/12.406674

    Article  ADS  Google Scholar 

  24. M. A. Okatov, E. A. Antonov, A. Baigozhin, et al., in Handbook of Technologist–Optician, Ed. by M. A. Okatov (Politekhnika, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  25. R. Blunt, Proc. of CEMANTECH Conf. (Vancouver, Canada, 2006), pp. 59–62.

  26. D. Martinez-Galarce, R. Soufli, D. L. Windt, et al., Opt. Eng. 52 (9), 095102 (2013).

    Article  ADS  Google Scholar 

  27. I. V. Kozhevnikov and M. V. Pyatakhin, J. X-Ray Sci. Technol. 8, 253 (2000).

    Google Scholar 

  28. V. E. Asadchikov, I. V. Kozhevnikov, Yu. S. Krivonosov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 530, 575 (2004).

    Google Scholar 

  29. M. M. Barysheva, N. I. Chkhalo, M. N. Drozdov, et al., J. X-Ray Sci. Technol. 27 (5), 857 (2019). https://doi.org/10.3233/xst-190495

    Article  Google Scholar 

  30. M. V. Svechnikov, N. I. Chkhalo, M. N. Toropov, et al., Opt. Lett. 40 (2), 159 (2015).

    Article  ADS  Google Scholar 

  31. J. E. Griffith and D. A. Grigg, J. Appl. Phys. 74 (9), R83 (1993).

    Article  ADS  Google Scholar 

  32. M. M. Barysheva, Yu. A. Vainer, B. A. Gribkov, et al., Bull. Russ. Acad. Sci.: Phys. 75 (1), 67 (2011).

    Article  Google Scholar 

  33. N. I. Chkhalo, S. A. Churin, A. E. Pestov, et al., Opt. Express 22 (17), 20094 (2014).

    Article  ADS  Google Scholar 

  34. N. I. Chkhalo, N. N. Salashchenko, and M. V. Zorina, Rev. Sci. Instrum. 86, 016102 (2015).

    Article  ADS  Google Scholar 

  35. N. I. Chkhalo, I. V. Malyshev, A. E. Pestov, et al., Appl. Opt. 55 (3), 619 (2016).

    Article  ADS  Google Scholar 

  36. N. I. Chkhalo, I. V. Malyshev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, and M. N. Toropov, Phys.-Usp. 63 (1), 67 (2020). https://doi.org/10.3367/UFNe.2019.05.038601

    Article  Google Scholar 

  37. V. N. Mahajan and G. M. Dai, J. Opt. Soc. Am. A 24 (9), 2994 (2007).

    Article  ADS  Google Scholar 

  38. M. V. Svechnikov, N. I. Chkhalo, M. N. Toropov, and N. N. Salashchenko, Opt. Express 23 (11), 14677 (2015).

    Article  ADS  Google Scholar 

  39. A. A. Akhsakhalyan, D. A. Gavrilin, I. V. Malyshev, N. N. Salashchenko, M. N. Toropov, B. A. Ulasevich, N. N. Tsybin, and N. I. Chkhalo, Tech. Phys. 64 (11), 1698 (2019). https://doi.org/10.1134/S1063784219110021

    Article  Google Scholar 

  40. E. Ziegler, L. Peverini, N. Vaxelaire, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 616 (2–3), 188 (2010).

    Google Scholar 

  41. S. Chen, S. Li, X. Peng, H. Hu, and G. Tie, Appl. Opt. 54 (6), 1478 (2015).

    Article  ADS  Google Scholar 

  42. N. I. Chkhalo, S. A. Churin, M. S. Mikhaylenko, et al., Appl. Opt. 55 (6), 1249 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

This study was performed on the equipment of the Center for Collective Use of the Institute for Physics of Microstructures, Russian Academy of Sciences, and was supported by the Ministry of Education and Science of the Russian Federation under contract no. 075-02-2018-182 (RFMEFI60418X0202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Chkhalo.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropov, M.N., Akhsakhalyan, A.A., Zorina, M.V. et al. Obtaining of Smooth High-Precision Surfaces by the Mechanical Lapping Method. Tech. Phys. 65, 1873–1879 (2020). https://doi.org/10.1134/S1063784220110262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220110262

Navigation