Skip to main content
Log in

Application of Novel Multilayer Normal-Incidence Mirrors for EUV Solar Spectroscopy

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Recent significant progress in the development of multilayer normal-incidence EUV mirrors is primarily related to an increase in the reflection coefficient at the working wavelength, a decrease in the spectral width of the reflection curve, and application of high-efficiency multilayer coatings for short-wavelength (3–9 nm) and long wavelength (greater than 50 nm) spectral ranges. Such mirrors allow astrophysical study of the Sun, since relatively narrow spectral widths of the mirrors and high reflection coefficients make it possible to image corona in monochromatic lines. Telescopes based on the mirrors are promising for dynamic spectral diagnostics of the solar disk with the aid of imaging spectroscopy. The method is based on the detection of monochromatic images of the Sun using the EUV spectral lines with relatively high spatial and temporal resolution. Possible progress in the solar study related to application of specified optical elements is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. L. Garrett and R. Tousey, Appl. Opt. 16, 898 (1977). https://doi.org/10.1364/AO.16.000898

    Article  ADS  Google Scholar 

  2. S. V. Kuzin, I. A. Zhitnik, A. A. Pertsov, V. A. Slemzin, A. V. Mitrofanov, A. P. Ignatiev, V. V. Korneev, V. V. Krutov, I. I. Sobelman, E. N. Ragozin, and R. J. Thomas, J. X-Ray Sci.Technol. 7 (3), 233 (1997).

    ADS  Google Scholar 

  3. J.-P. Delaboudiniére, G. E. Artzner, J. Brunaud, A. H. Gabriel, J. F. Hochedez, F. Millier, X. Y. Song, B. Au, K. P. Dere, R. A. Howard, R. Kreplin, D. J. Michels, J. D. Moses, J. M. Defise, C. Jamar, et al., Solar Phys. 162 (1–2), 291 (1995). https://doi.org/10.1007/BF00733432

    Article  ADS  Google Scholar 

  4. I. Zhitnik, S. Kuzin, A. Afanas’ev, O. Bugaenko, A. Ignat’ev, V. Krutov, A. Mitrofanov, S. Oparin, A. Pertsov, V. Slemzin, N. Sukhodrev, and A. Umov, Adv. Space Res. 32 (4), 473 (2003). https://doi.org/10.1016/S0273-1177(03)00351-X

    Article  ADS  Google Scholar 

  5. A. M. Title, Bull. Am. Astron. Soc. 41, 871 (2010).

    ADS  Google Scholar 

  6. S. S. Andreev, M. S. Bibishkin, N. I. Chkhalo, E. B. Kluenkov, K. A. Prokhorov, N. N. Salashchenko, M. V. Zorina, F. Schafers, and L. A. Shmaenok, J. Synchrotron Radiat. 10, 358 (2003). https://doi.org/10.1107/S0909049503015255

    Article  Google Scholar 

  7. A. D. Akhsakhalyan, E. B. Kluenkov, A. Ya. Lopatin, V. I. Luchin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, M. N. Toropov, N. N. Tsybin, N. I. Chkhalo, and A. V. Shcherbakov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11 (1), 1 (2017). https://doi.org/10.1134/S1027451017010049

    Article  Google Scholar 

  8. M. M. Barysheva, A. E. Pestov, N. N. Salashchenko, M. N. Toropov, and N. I. Chkhalo, Phys.-Usp. 55 (7), 681 (2012). https://doi.org/10.3367/UFNe.0182.201207c.0727

    Article  Google Scholar 

  9. N. I. Chkhalo, S. Kunstner, V. N. Polkovnikov, N. N. Salashchenko, F. Schäfers, and S. D. Starikov, Appl. Phys. Lett. 102 (1), 11 (2003). https://doi.org/10.1063/1.4774298

    Article  Google Scholar 

  10. S. V. Kuzin, S. A. Bogachev, I. A. Zhitnik, S. V. Shestov, V. A. Slemzin, A. V. Mitrofanov, N. K. Sukhodrev, A. A. Pertsov, A. V. Ignat’ev, Yu. S. Ivanov, A. A. Reva, M. S. Zykov, A. S. Ul’yanov, S. N. Oparin, A. L. Goncharov, et al., Bull. Russ. Acad. Sci.: Phys. 74 (1), 33 (2010). https://doi.org/10.3103/S1062873810010090

    Article  Google Scholar 

  11. N. Chkhalo, A. Lopatin, A. Nechay, D. Pariev, A. Pestov, V. Polkovnikov, N. Salashchenko, F. Schäfers, M. Sertsu, A. Sokolov, M. Svechnikov, N. Tsybin, and S. Zuev, J. Nanosci. Nanotechnol. 19, 546 (2019). https://doi.org/10.1166/jnn.2019.16474

    Article  Google Scholar 

  12. N. I. Chkalo, M. N. Drozdov, E. B. Kluenkov, S. V. Kuzin, A. Ya. Lopatin, V. I. Luchin, N. N. Salashchenko, N. N. Tsybin, and S. Yu. Zuev, Appl. Opt. 55, 4683 (2016). https://doi.org/10.1364/AO.55.004683

    Article  ADS  Google Scholar 

  13. N. I. Chkhalo, D. E. Pariev, V. N. Polkovnikov, N. N. Salashchenko, R. A. Shaposhnikov, I. L. Stroulea, M. V. Svechnikov, Yu. A. Vainer, and S. Yu. Zuev, Thin Solid Films 631, 106 (2017). https://doi.org/10.1016/j.tsf.2017.04.020

    Article  ADS  Google Scholar 

  14. V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, and N. I. Chkhalo, Phys.-Usp. 63 (1), 83 (2020). https://doi.org/10.3367/UFNe.2019.05.038623

    Article  Google Scholar 

  15. V. N. Polkovnikov, N. N. Chkalo, R. Pleshkov, N. N. Salashchenko, F. Schäfers, M. G. Sertsu, A. Sokolov, M. V. Svechnikov, and S. Yu. Zuev, Opt. Lett. 44 (2), 263 (2019). https://doi.org/10.1364/OL.44.000263

    Article  ADS  Google Scholar 

  16. S. V. Shestov, A. S. Ulyanov, E. A. Vishnyakov, A. A. Pertsov, and S. V. Kuzin, Proc. SPIE 9144, 91443G (2014). https://doi.org/10.1117/12.2055946

    Article  ADS  Google Scholar 

  17. S. A. Bogachev, N. I. Chkhalo, S. V. Kuzin, D. E. Pariev, V. N. Polkovnikov, N. N. Salashchenko, S. V. Shestov, and S. Y. Zuev, Appl. Opt. 55 (9), 2126 (2016). https://doi.org/10.1364/AO.55.002126

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-12-01567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kuzin.

Ethics declarations

The authors declare that there is no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzin, S.V., Reva, A.A., Bogachev, S.A. et al. Application of Novel Multilayer Normal-Incidence Mirrors for EUV Solar Spectroscopy. Tech. Phys. 65, 1736–1739 (2020). https://doi.org/10.1134/S1063784220110171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220110171

Navigation