Skip to main content
Log in

A Quantum Theory of Electron Emission from a Metal–Dielectric Structure in High Electric Fields

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A generalized formula for electron emission current as a function of temperature, field, and electron work function in a metal–dielectric system has been derived with regard to the quantum nature of image forces. For free electrons, the Fermi–Dirac distribution and a quantum image potential obtained in terms of the electron polaron theory have been used. The well-known Richardson–Schottky formula (for thermionic emission) and Fowler–Nordheim formula (for field emission) have been derived in the limit of the image force classical potential. It has been shown that at high temperatures and electric fields E ≥ 10 MV/cm, the polaron contribution grows with field and declines with rising temperature. The decrease in emission current is associated with the increase in effective work function of electrons, which is due to the electron polaron effect. Extrapolation formulas suitable for theoretical estimation of thermionic and cold emission currents have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. A. Mesyats and D. I. Proskurovsky, Pulsed Electrical Discharge in Vacuum (Springer, Berlin, 1989).

    Book  Google Scholar 

  2. High Voltage Vacuum Insulation: Basic Concepts and Technological Practice, Ed. by R. V. Latham (Academic, London, 1995).

    Google Scholar 

  3. B. M. Cox and W. T. Williams, J. Phys. D: Appl. Phys. 10 (3), L5 (1977).

    Article  ADS  Google Scholar 

  4. G. A. Mesyats, Cathode Phenomena in a Vacuum Discharge: The Breakdown, the Spark, and the Arc (Nauka, Moscow, 2000).

    Google Scholar 

  5. A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer, New York, 2008).

    Book  Google Scholar 

  6. G. Guignard, CERN Report 2000-008 (Geneva, 2000).

  7. W. Wuensch, Tech. Rep. CERN-OPEN-2014-028, CLIC Note-1025 (CERN, Geneva, 2013).

  8. S. A. Barengolts, V. G. Mesyats, V. I. Oreshkin, E. V. Oreshkin, K. V. Khishchenko, I. V. Uimanov, and M. M. Tsventoukh, Phys. Rev. Accel. Beams 21, 061004 (2018).

    Article  ADS  Google Scholar 

  9. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (URO-press, Yekaterinburg, 1998).

  10. Y. Toyozawa, Progr. Theor. Phys. 12, 421 (1954).

    Article  ADS  Google Scholar 

  11. J. Hermanson, Phys. Rev. 6, 2427 (1972).

    Article  ADS  Google Scholar 

  12. J. Hermanson, in Elementary Excitations in Solids, Molecules, and Atom, Part B (Springer, 1974), p. 199.

    Google Scholar 

  13. S. I. Beril and E. P. Pokatilov, Semiconductors 12, 1207 (1978).

    Google Scholar 

  14. E. P. Pokatilov, S. I. Beril, and V. M. Fomin, Poverkhn.: Fiz., Khim., Mekh. 5, 5 (1988).

    Google Scholar 

  15. E. P. Pokatilov, S. I. Beril, and V. M. Fomin, Phys. Status Solidi B 147, 163 (1988).

    Article  ADS  Google Scholar 

  16. S. I. Beril, E. P. Pokatilov, E. P. Goryachkovskii, and N. N. Semenovskaya, Phys. Status Solidi B 176, 347 (1993).

    Article  ADS  Google Scholar 

  17. E. P. Pokatilov, S. I. Beril, and V. M. Fomin, Vibrational Excitations, Polarons, and Excitons in Multilayer Systems and Superlattices (Shtiintsa, Kishinev, 1990), p. 155 [in Russian].

  18. E. I. Murphy and A. N. Good, Phys. Rev. 162, 1464 (1956).

    Article  ADS  Google Scholar 

  19. Y. A. Barengolts and S. I. Beril, IEEE Trans. Plasma Sci. 42, 3109 (2014).

    Article  ADS  Google Scholar 

  20. Y. A. Barengolts and S. I. Beril, in Proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering, IFMBE Proc. 55, 230 (2016).

    Article  Google Scholar 

  21. K. V. Reich and E. D. Eidelman, Eur. Phys. Lett. 85, 47007 (2009).

    Article  ADS  Google Scholar 

  22. V. S. Edel’man, Sov. Phys. Usp. 23, 227 (1980). https://doi.org/10.1070/PU1980v023n04ABEH004711

    Article  ADS  Google Scholar 

  23. V. B. Shikin and Yu. P. Monarkha, Fiz. Nizk. Temp. 1, 957 (1975).

    Google Scholar 

  24. A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, New York, 1984).

    Book  Google Scholar 

  25. A. Harstein and Z. A. Weinberg, Phys. Rev. 20, 1335 (1979).

    Article  ADS  Google Scholar 

  26. A. Harstein and Z. A. Weinberg, J. Phys. C: Solid State Phys. 11, L469 (1978).

    Article  ADS  Google Scholar 

  27. V. N. Shrednik, in Non-Heated Cathodes (Sovetskoe Radio, Moscow, 1974), p. 166 [in Russian].

    Google Scholar 

  28. E. O. Popov, A. G. Kolosko, M. A. Chumak, and S. V. Filippov, Tech. Phys. 64, 1530 (2019).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, grant no. 17-08-01282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Barengolts.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beril, S.I., Barengolts, S.A., Barengolts, Y.A. et al. A Quantum Theory of Electron Emission from a Metal–Dielectric Structure in High Electric Fields. Tech. Phys. 65, 994–1001 (2020). https://doi.org/10.1134/S1063784220060043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220060043

Navigation