Skip to main content
Log in

The Influence of Film Thickness on the Annealing-Induced Changes of Texture and of the Fraction of Crystalline Phase in Pt Films

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Textured Pt films 20–80 nm in thickness magnetron-sputtered on an oxidized c-Si(100) substrate have been annealed in vacuum at 500°C for 60 min. The texture parameters and the fraction of crystalline phase as a function of thickness have been studied for as-prepared and annealed films using methods of X-ray diffraction analysis. The fraction of crystalline phase in textured films has been determined by a special technique based on rocking curve examination. It has been found that for all as-deposited films, annealing improves texture and increases the fraction of crystalline phase, the thinner the film, the greater the effect. This result is explained by the appearance of large secondary grains, the volume fraction of which grows with decreasing thickness. The nonuniform in-depth distribution of texture parameters and fraction of crystalline phase in as-grown Pt films has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. A. Vorotilov, O. M. Zhigalina, V. A. Vasil’ev, and A. S. Sigov, Phys. Solid State 51, 1337 (2009). .https://doi.org/10.1134/S106378340907004X

    Article  ADS  Google Scholar 

  2. D. Chateigner, H. R. Wenk, A. Patel, M. Todd, and D. J. Barber, Int. Ferroelectr. 19, 121 (1998). https://doi.org/10.1080/10584589808012699

    Article  Google Scholar 

  3. D. M. Potrepka, G. R. Fox, L. M. Sanchez, and R. G. Polcawich, Mater. Res. Soc. Symp. Proc. 1299, 67 (2011). https://doi.org/10.1557/opl.2011.53

    Article  Google Scholar 

  4. J. P. B. Silva, K. C. Sekhar, A. Almeida, Agostinho J. Moreira, J. Martin-Sanchez, M. Pereira, A. Khodorov, and J. M. Gomes, J. Appl. Phys. 112, 044105 (2012). https://doi.org/10.1063/1.4748288

    Article  ADS  Google Scholar 

  5. E. Mirica, G. Kowach, P. Evans, and H. Du, Cryst. Growth Des. 4, 147 (2004). https://doi.org/10.1021/cg025595j

    Article  Google Scholar 

  6. S. K. Kim, S. Y. Jeong, and C. R. Cho, Appl. Phys. Lett. 82, 562 (2003). https://doi.org/10.1063/1.1536253

    Article  ADS  Google Scholar 

  7. R. C. Lin, K. S. Kao, C. C. Cheng, and Y. C. Chen, Thin Solid Films 516, 5262 (2008). https://doi.org/10.1016/j.tsf.2007.07.105

    Article  ADS  Google Scholar 

  8. C. Caliendo and P. Massimilano Latino, Thin Solid Films 519, 6326 (2011). https://doi.org/10.1016/j.tsf.2011.04.017

    Article  ADS  Google Scholar 

  9. C. V. Thompson, J. Appl. Phys. 58, 763 (1985). https://doi.org/10.1063/1.336194

    Article  ADS  Google Scholar 

  10. P. Keblinski, D. Wolf, S. R. Phillpot, and H. Gleiter, Scr. Mater. 41, 631 (1999). https://doi.org/10.1016/S1359-6462(99)00142-6

    Article  Google Scholar 

  11. M. F. Malek, M. H. Mamat, Z. Khusaimi, M. Z. Sahdan, M. Z. Musa, A. R. Zainun, A. B. Suriani, Md N. D. Sin, S. B. Abd Hamid, and M. Rusop, J. Alloys Compd. 582, 12 (2014). https://doi.org/10.1016/j.jallcom.2013.07.202

    Article  Google Scholar 

  12. M. Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, P. M. Voyles, D. A. Muller, M. Bude, W. H. Lin, A. See, M. E. Loomans, S. K. Lahiri, and P. I. Raisanen, J. Appl. Phys. 93, 1477 (2003). https://doi.org/10.1063/1.1534381

    Article  ADS  Google Scholar 

  13. S. Heiroth, R. Frison, J. L. M. Rupp, T. Lippert, E. J. B. Meier, E. M. Gubler, M. Dobeli, K. Conder, A. Wokaun, and L. J. Gauckler, Solid State Ionics 191, 12 (2011). https://doi.org/10.1016/j.ssi.2011.04.002

    Article  Google Scholar 

  14. G. Palumbo, S. J. Thorne, and K. T. Aust, Scr. Metall. Mater. 24, 1347 (1990). https://doi.org/10.1016/0956-716X(90)90354-J

    Article  Google Scholar 

  15. T. Yamasaki, Scr. Mater. 44, 1497 (2001). https://doi.org/10.1016/S1359-6462(01)00720-5

    Article  Google Scholar 

  16. G. Roebben, C. Sarbu, T. Lubec, and O. van der Biest, Mater. Sci. Eng. A 370, 453 (2004). https://doi.org/10.1016/j.msea.2003.05.004

    Article  Google Scholar 

  17. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Readings, MA, 1956).

    Google Scholar 

  18. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray Diffraction, Electronic Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  19. Platinum, its Alloys and Composite Materials, Ed. by E. V. Vasil’eva (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  20. L. G. Schulz, J. Appl. Phys. 20, 1030 (1949). https://doi.org/10.1063/1.1698268

    Article  ADS  Google Scholar 

  21. Physical Values, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  22. A. J. Fox, B. Drawl, G. R. Fox, B. J. Gibbons, and S. Trolier-McKinstry, IEEE Trans. UFFC 62, 56 (2015). https://doi.org/10.1109/TUFFC.2014.006671

    Article  Google Scholar 

  23. F. Martin, P. Muralt, M. A. Dubois, and A. Pezous, J. Vac. Sci. Technol. A 22, 361 (2004). https://doi.org/10.1116/1.1649343

    Article  ADS  Google Scholar 

  24. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, J. Vac. Sci. Technol. A 21, S117 (2003). https://doi.org/10.1116/1.1601610

    Article  ADS  Google Scholar 

  25. Y. Kuru, U. Welzel, and E. J. Mittemeijer, Appl. Phys. Lett. 105, 221902 (2014). https://doi.org/10.1063/1.4902940

    Article  ADS  Google Scholar 

  26. R. V. Selyukov, V. V. Naumov, and S. V. Vasilev, Tech. Phys. 63, 900 (2018).

    Article  Google Scholar 

  27. Y. Wei, C. Su, and L. Anand, Acta Mater. 54, 3177 (2006). https://doi.org/10.1016/j.actamat.2006.03.007

    Article  Google Scholar 

  28. C. V. Thompson, Ann. Rev. Mater. Sci. 30, 159 (2000). https://doi.org/10.1146/annurev.matsci.30.1.159

    Article  ADS  Google Scholar 

  29. F. Ruffino, M. G. Grimaldi, C. Bongiorno, F. Giannazzo, F. Roccaforte, V. Raineri, and C. Spinella, J. Appl. Phys. 105, 054311 (2009). https://doi.org/10.1063/1.3093681

    Article  ADS  Google Scholar 

  30. T. D. Shen, C. C. Koch, T. Y. Tsui, and G. M. Pharr, J. Mater. Res. 10, 2892 (1995). https://doi.org/10.1557/JMR.1995.2892

    Article  ADS  Google Scholar 

Download references

Funding

This study was completed under sponsorship of the Federal Agency for Scientific Organizations of the Russian Federation.

SEM examinations were carried out at the Facilities Sharing Centre “Diagnostics of Micro- and Nano Structures” and financially supported by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Selyukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyukov, R.V., Naumov, V.V. The Influence of Film Thickness on the Annealing-Induced Changes of Texture and of the Fraction of Crystalline Phase in Pt Films. Tech. Phys. 65, 762–770 (2020). https://doi.org/10.1134/S1063784220050229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220050229

Navigation