Skip to main content
Log in

Position-Sensitive Thermal and Cold Neutron Detectors with \(_{2}^{3}{\text{He}}\) Gas Converter (Review)

  • REVIEWS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A brief analytical review of position-sensitive thermal and cold neutron detectors based on a \(_{2}^{3}{\text{He}}\) gas converter is presented. Most attention is paid to new approaches and technical solutions that determine the developmental trends of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.

Similar content being viewed by others

Notes

  1. Hereinafter, we use the abbreviations adopted in foreign literature.

  2. Converters are also called radiators.

  3. Isotopic abundance in nature of \(_{2}^{3}{\text{He}}\) is 0.00014% and, of \(_{2}^{4}{\text{He}}\), 99.99986%; other helium isotopes are unstable; hereinafter, nuclear charge z = 2 will be suppressed.

  4. https://www.researchgate.net/publication/285860794_The_Helium3_Shortage_Supply_Demand_and_Options_for_Congress. In [6], it is noted that, in 1995, the price of a liter of 3He was about US $100 and, after 2014, US $1,500–4,000.

  5. On pulsed sources, the neutron flight time is measured and the neutron wavelength and energy are determined with high accuracy.

  6. The space resolution is hereinafter referred to as the full width at half maximum (FWHM).

  7. The gas amplification factor and the electron drift velocity depend on E/p (E is the field strength and p is the gas pressure). With increasing pressure in gas-discharge detectors, it is necessary to increase the voltage to maintain the ratio E/p unchanged.

  8. On the path of neutrons to their detection, there should be no organic materials containing hydrogen, which strongly scatters neutrons.

  9. The tracks of the fragments of reaction (1) touch the walls of the casing; in this case, some of the primary electrons are lost; as a result, the signal amplitude decreases and a tail in the amplitude spectrum, extending from the main peak to zero, appears: the window effect.

  10. SRIM—The Stopping and Range of Ions in Matter, http://www.srim.org/.

  11. Schott S8900 glass, unlike Desag D263 and Corning 7740, is electrically stable, with which no changes in the MSGC characteristics were noticed.

  12. The surface resistance of a resistive film of thickness d does not depend on the size of the square and is determined by the ratio R = ρ/d [Ω/□], where ρ is the resistivity of the film material.

  13. See also A. Oed et al., Nucl. Instrum. Methods Phys. Res., Sect. A 416, 263 (1998).

  14. L. Margato, Jornadas LIP, Lisbon, Portugal, 2012.

  15. For example, Hamamatsu R292 photomultiplier with a spectral region of 185–900 nm.

  16. http:mpgd.web.cern.ch/mpgd/.

  17. Do not confuse the Gaseous Electron Multiplier (GEM) with the well-known abbreviation for the neutron diffractometer at the ISIS: General Materials Diffractometer.

  18. Triethylamine vapor.

  19. G. Iakovidis on behalf of the ATLAS Muon Collaboration VMM-An ASIC for Micro-Pattern Detector. https://doi.org/10.1051/epjconf/201817407001

REFERENCES

  1. V. F. Ezhov and V. V. Fedorov, Uses of Neutrons (Peterb. Inst. Yad. Fiz., Gatchina, 2007). http:// nrd.pnpi.spb.ru/pdf/booklet_2007_05_28.pdf.

  2. http://www.pnpi.spb.ru/ustanovki/reaktor-pik.

  3. P. Convert and J. B. Forsyth, Position-Sensitive Detection of Thermal Neutrons (Academic, London, 1983).

    Google Scholar 

  4. A. Oed, Nucl. Instrum. Methods Phys. Res., Sect. A 263, 351 (1988).

    Google Scholar 

  5. V. Radeka, Proc. Neutron & Photon Detector Workshop, Gaithersburg, United States,2012. https://portal.slac.stanford.edu/sites/conf_public/nxd2012/presentations/VR_Neutron%20gas%20dets_Aug1_2012.pdf.

  6. Th. Wilpert, Proc. CREMLIN Workshop, St. Petersburg, Russia,2018. https://indico.frm2.tum.de/event/65/ sessions/294/attachments/202/331/2018_05_14_ CREMLIN_Th_Wilpert.pdf.

  7. https://www.lndinc.com/product-category/neutron-detectors/he3-detectors/position-sensitive-he3-neutron-detectors/.

  8. W. B. Yelon, C. W. Tompson, F. R. Mildner, and R. Berliner, Nucl. Instrum. Methods Phys. Res., Sect. A 226, 421 (1984).

    Google Scholar 

  9. S. Makino, A. Sumita, T. Onodera, Y. Tanaka, N. Hikida, and K. Ishizawa, Proc. IEEE Nucl. Sci. Symp., Dresden, Germany,2008. https://doi.org/10.1109/NSSMIC.2008.4774547

  10. V. P. Glazkov, I. V. Naumov, V. A. Somenkov, and S. Sh. Shil’shtein, Nucl. Instrum. Methods Phys. Res., Sect. A 264, 367 (1988).

    Google Scholar 

  11. V. Radeka, Ann. Rev. Nucl. Part. Sci. 38, 217 (1988).

    Article  ADS  Google Scholar 

  12. W. Blum, W. Riegler, and L. Rolandi, Particle Detection with Drift Chambers (Springer, 2008).

    Google Scholar 

  13. G. J. Cuello, J. Darpentigny, L. Hennet, L. Cormier, J. Dupon, B. Homatter, and B. Beuneu, J. Phys.: Conf. Ser. 746, 012020 (2016).

    Google Scholar 

  14. V. Radeka, N. A. Schaknowski, G. C. Smith, and B. Yu, Nucl. Instrum. Methods Phys. Res., Sect. A 419, 642 (1998).

    Google Scholar 

  15. J. Harder, V. Radeka, G. Smith, and B. Yu, Nucl. Instrum. Methods Phys. Res., Sect. A 576, 397 (2007).

    Google Scholar 

  16. J. Fried, J. A. Harder, G. J. Mahler, D. S. Makowiecki, J. A. Mead, V. Radeka, N. A. Schaknowski, G. C. Smith, and B. Yu, Nucl. Instrum. Methods Phys. Res., Sect. A 478, 415 (2002).

    Google Scholar 

  17. B. P. Schoenborn, J. Schefer, and D. K. Schneider, Nucl. Instrum. Methods Phys. Res., Sect. A 252, 180 (1986).

    Google Scholar 

  18. K. Toh, T. Nakamura, K. Sakasai, K. Soyama, and H. Yamagishi, J. Phys.: Conf. Ser. 528, 012045 (2014). https://doi.org/10.1088/1742-6596/528/1/012045

    Article  Google Scholar 

  19. R. Allemand, J. Bourdel, E. Roudaut, P. Convert, K. Ibel, J. Jacobe, P. Cotton, and B. Farnoux, Nucl. Instrum. Methods Phys. Res., Sect. A 126, 29 (1975).

    Google Scholar 

  20. J. C. Buffet, J. F. Clergeau, R. G. Cooper, J. Darpentigny, A. De Laulany, C. Fermon, S. Fetal, F. Fraga, B. Guerard, R. Kampmann, A. Kastenmueller, G. J. McIntyre, G. Manzin, F. Meilleu, F. Millier, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 554, 392 (2005).

    Google Scholar 

  21. S. A. Kulikov, Proc. CREMLIN Workshop, St. Petersburg, Russia,2018. https://indico.frm2.tum.de/event/ 65/sessions/294/attachments/202/332/Detectors_FLNP_2018_1-kulikov.pdf.

  22. D. A. Abdushukurov, Izv. Akad. Nauk Tadzh., No. 3, 27 (2008).

  23. http://www.denex-gmbh.de/downloads/manual_300TN.pdf.

  24. V. Andreev, G. Ganzha, D. Ilyin, E. Ivanov, S. Kovalenko, A. Krivshich, A. Nadtochy, and V. Runov, Nucl. Instrum. Methods Phys. Res., Sect. A 581, 123 (2007).

    Google Scholar 

  25. B. Yu, G. J. Mahler, N. A. Schaknowski, and G. C. Smith, IEEE Trans. Nucl. Sci. 48, 336 (2001). https://doi.org/10.1109/23.940076

    Article  ADS  Google Scholar 

  26. B. Yu, N. A. Schaknowski, G. C. Smith, G. DeGeronimo, E. O. Vernon, L. G. Clonts, CL. Britton, and S.S. Frank, Proc. IEEE Nucl. Sci. Symp., Dresden, Germany,2008, p. 1878. https://doi.org/10.1109/NSSMIC.2008.4774757

  27. N. A. Schaknowski, G. C. Smith, B. Yu, and J. Doumas, Proc. IEEE Nucl. Sci. Symp., Fajardo, Puerto Rico,2005, p. 1201.

  28. A. Oed, Nucl. Instrum. Methods Phys. Res., Sect. A 525, 62 (2004).

    Google Scholar 

  29. J. F. Clergeau, P. Convert, D. Feltin, H. E. Fischer, B. Guerard, T. Hansen, G. Manzin, A. Oed, and P. Palleau, IEEE Trans. Nucl. Sci. 48, 1075 (2001).

    Article  ADS  Google Scholar 

  30. B. Guérard, Proc. Workshop on Neutron Detectors for Spallation Sources, Upton, United States,1998.

  31. B. Guérard, Neutron News 16 (4), 16 (2005). https://doi.org/10.1080/10448630500454445

    Article  Google Scholar 

  32. B. Gebauer, Nucl. Instrum. Methods Phys. Res., Sect. A 535, 65 (2004).

    Google Scholar 

  33. P. Convert, T. Hansen, A. Oed, and J. Torregrossa, Phys. B 241243, 195 (1997).

  34. T. Hansen, P. F. Henry, H. E. Fischer, J. Torregrossa, and P. Convert, Meas. Sci. Technol. 19, 034001 (2008). https://doi.org/10.1088/0957-0233/19/3/034001

    Article  ADS  Google Scholar 

  35. T. Tanimori, Y. Nishi, A. Ochi, and Y. Nishi, Nucl. Instrum. Methods Phys. Res., Sect. A 436, 188 (1999). https://doi.org/10.1016/S0168-9002(99)00619-1

    Article  Google Scholar 

  36. H. Tanaka, T. Nakamura, H. Yamagishi, K. Soyama, K. Aizawa, A. Ochi, and T. Tanimori, IEEE Trans. Nucl. Sci. 53, 2264 (2006).

    Article  ADS  Google Scholar 

  37. K. Fujita, H. Takahashi, P. Siritiprussamee, H. Niko, T. Ino, H. M. Shimizu, S. Kishimoto, M. Furusaka, H. Toyokawa, and M. Kanazawa, Proc. IEEE Nucl. Sci. Symp., San Diego, United States,2006, p. 832.

  38. G. Manzin, B. Guerard, F. A. F. Fraga, and L. M. S. Margato, Nucl. Instrum. Methods Phys. Res., Sect. A 535, 102 (2004).

    Google Scholar 

  39. A. Morozov, L. M. S. Margato, M. M. F. R. Fraga, L. Pereira, and F. A. F. Fraga, J. Instrum. 7, 02008 (2012).

    Article  Google Scholar 

  40. F. Sauli, Nucl. Instrum. Methods Phys. Res., Sect. A 386, 531 (1997).

    Google Scholar 

  41. Y. Giomataris, Ph. Rebourgeard, J. P. Robert, and G. Charpak, Nucl. Instrum. Methods Phys. Res., Sect. A 376, 29 (1996).

    Google Scholar 

  42. T. L. Vuure, C. W. E. Eijk, F. Frag, R. W. Hollander, and L. Margato, IEEE Trans. Nucl. Sci. 48, 1092 (2001).

    Article  ADS  Google Scholar 

  43. T. L. Vuure, PhD Thesis (Delft Univ., 2004).

  44. J. F. C. A. Veloso, F. Amaro, J. M. F. Santos, J. A. Mir, G. E. Derbyshire, R. Stephenson, N. J. Rhodes, and E. M. Schooneveld, IEEE Trans. Nucl. Sci. 51, 2104 (2004).

    Article  ADS  Google Scholar 

  45. F. A. F. Fraga, L. M. S. Margato, S. T. G. Fetal, M. M. F. R. Fraga, A. J. P. L. Policarpo, B. Guerard, A. Oed, G. Manzini, and T. L. Vuure, Nucl. Instrum. Methods Phys. Res., Sect. A 478, 357 (2002).

    Google Scholar 

  46. G. Bencivenni, R. Oliveira, G. Felici, M. Gatta, M. Giovannetti, G. Morello, A. Ochi, M. Poli Lener, and E. Tskhadadze, J. Instrum. 14, 05014 (2019).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-02-2018-260 of November 26, 2018; unique project identification number RFMEFI60718X0200. Application code 2018-14-000-0001-024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kashchuk.

Ethics declarations

The authors declare that they do not have a conflict of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashchuk, A.P., Levitskaya, O.V. Position-Sensitive Thermal and Cold Neutron Detectors with \(_{2}^{3}{\text{He}}\) Gas Converter (Review). Tech. Phys. 65, 493–513 (2020). https://doi.org/10.1134/S1063784220040118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220040118

Navigation