Skip to main content
Log in

Nanofluids for Power Engineering: The Mechanism of the Influence of Dispersing Agents on the Thermal Parameters and Crisis Phenomena during Boiling

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of dispersing agents of organic (CTAB) and inorganic (sodium pyrophosphate and sodium silicate) nature on the critical heat flux and the heat transfer coefficients during boiling of various water-based nanofluids under free convection has been studied. It has been established that addition of ionic dispersants to aluminosilicate nanofluids, increasing the aggregative and sedimentation stability of the latter, impairs, as a rule, their thermal parameters during boiling causing a sudden precrisis burnout of the heater in the installation powered by direct current. The mechanism of the phenomenon under investigation has been established. It is shown that dispersants and surfactants added to carbon-containing nanofluids with high thermal conductivity, enhancing the stability of the latter, increase, however, the heat transfer coefficient at boiling and cause precrisis burnout of the heater powered by direct current. The influence of dispersants on the crisis phenomena under boiling of water and nanofluids has been analyzed and the causes of sudden precrisis burnout of the heater have been identified. Several mechanisms for interpretation of the effects observed have been proposed. The reasonability of using alternating current for heating and nonionic nonfoaming surfactants and dispersants for prevention of the early onset of the boiling crisis in order to achieve higher values of the critical heat flux and heat transfer coefficient under boiling of nanofluids has been substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (Wiley, New Jersey, 2007).

    Book  Google Scholar 

  2. W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, Heat Transfer Eng. 29, 432 (2008).

    Article  ADS  Google Scholar 

  3. S. K. Das, N. Putra, and W. Roetzel, Int. J. Heat Mass Transfer 46, 851 (2003).

    Article  Google Scholar 

  4. H. Kim, Nanoscale Res. Lett. 6, 415 (2011).

    Article  ADS  Google Scholar 

  5. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, and H. Li, Curr. Appl. Phys. 9, 131 (2009).

    Article  ADS  Google Scholar 

  6. A. Amrollahi, A. M. Rashidi, M. Emami Meibodi, and K. Kashefi, J. Exp. Nanosci. 4, 347 (2009).

    Article  Google Scholar 

  7. M. J. Assael, I. N. Metaxa, J. Arvanitidis, D. Christofilos, and C. Lioutas, Int. J. Thermophys. 26, 647 (2005).

    Article  ADS  Google Scholar 

  8. L. L. Song, R. Y. Zhang, L. B. Mao, W. J. Zhu, and M. Y. Zheng, Appl. Mech. Mater. 7178, 122 (2011). https://doi.org/10.4028/www.scientific.net/AMM.71-78.122

  9. B. I. Bondarenko, V. N. Moraru, S. V. Sidorenko, D. V. Komysh, and A. I. Khovavko, Tech. Phys. Lett. 38, 853 (2012).

    Article  ADS  Google Scholar 

  10. B. I. Bondarenko, V. N. Moraru, S. V. Sydorenko, D. V. Komysh, A. I. Khovavko, and A. V. Snigur, in Proc. 8th Int. Symp. on Heat Transfer, Beijing,2012, p. 181.

  11. B. I. Bondarenko, V. N. Moraru, S. V. Sydorenko, D. V. Komysh, and A. I. Khovavko, Nanosci. Nanoeng. 4, 12 (2016).

    Google Scholar 

  12. E. C. Forrest, S.M. and S.B. Thesis (Massachusetts Inst. of Technology, 2009).

  13. A. V. Minakov, M. I. Pryazhnikov, D. V. Guzei, G. M. Zeer, and V. Ya. Rudyak, Int. J. Therm. Sci. 116, 214 (2017).

    Article  Google Scholar 

  14. A. S. Surtaev, V. S. Serdyukov, and A. N. Pavlenko, Nanotechnol. Russ. 11, 696 (2016).

    Article  Google Scholar 

  15. G. Liang and I. Mudawar, Int. J. Heat Mass Transfer 124, 423 (2018).

    Article  Google Scholar 

  16. D. Milanova and R. Kumar, Appl. Phys. Lett. 87, 233107 (2005).

    Article  ADS  Google Scholar 

  17. D. Milanova and R. Kumar, J. Heat Transfer 130, 042401 (2008).

    Article  Google Scholar 

  18. R. Kumar and D. Milanova, Appl. Phys. Lett. 94, 073107 (2009).

    Article  ADS  Google Scholar 

  19. R. Kathiravan, R. Kumar, A. Gupta, and R. Chandra, Int. J. Heat Mass Transfer 53, 1673 (2010).

    Article  Google Scholar 

  20. Yu. I. Tarasevich, Structure and Surface Chemistry of Layered Silicates (Naukova Dumka, Kiev, 1988).

    Google Scholar 

  21. V. N. Moraru, Clay Miner. 53, 255 (2018).

    Article  ADS  Google Scholar 

  22. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  23. V. N. Moraru, N. I. Lebovka, and D. G. Chevchenko, Colloids Surf., A 242, 181 (2004).

    Article  Google Scholar 

  24. B. I. Bondarenko, V. N. Moraru, B. K. Ilyenko, A. I. Khovavko, D. V. Komysh, E. M. Panov, S. V. Sydorenko, and O. V. Snigur, Int. J. Energy Clean Environ. 14, 151 (2013).

    Article  Google Scholar 

  25. B. I. Bondarenko, V. N. Moraru, S. V. Sydorenko, and D. G. Komysh, in Proc. 2nd AMN-APLOC Conf., Singapore,2011, p. 74.

  26. H. Van Olphen, An Introduction to Clay Colloid Chemistry (Wiley, New York, 1977).

    Google Scholar 

  27. S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, Appl. Phys. Lett. 89, 153107 (2006). https://doi.org/10.1063/1.2360892

    Article  ADS  Google Scholar 

  28. S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, Bull. Pol. Acad. Sci.: Tech. Sci. 55, 211 (2007).

    Article  Google Scholar 

  29. S. M. You, J. H. Kim, and K. H. Kim, Appl. Phys. Lett. 83, 3374 (2003). https://doi.org/10.1063/1.1619206

    Article  ADS  Google Scholar 

  30. Q. T. Pham, T. I. Kim, S. S. Lee, and S. H. Chang, Appl. Therm. Eng. 35, 157 (2012).

    Article  Google Scholar 

  31. H. D. Kim and M. H. Kim, Appl. Phys. Lett. 91, 014104 (2007).

    Article  ADS  Google Scholar 

  32. H. H. Son and S. J. Kim, Int. J. Heat Mass Transfer 138, 985 (2019).

    Article  Google Scholar 

  33. S. S. Dukhin, V. R. Estrela-Liopys, and E. K. Jolkhovsky, Electrosurface Phenomena and Electrofiltration (Naukova Dumka, Kiev, 1985).

    Google Scholar 

  34. B. I. Bondarenko, V. N. Moraru, S. V. Sidorenko, D. V. Komysh, and N. N. Gudkov, Tech. Phys. Lett. 44, 461 (2018).

    Article  ADS  Google Scholar 

  35. D. M. Vazquez, S.M. Thesis (Univ. of Central Florida, Orlando, 2008).

Download references

Funding

This work was supported by the Support for the Development of Priority Research Areas Program, project no. KPKVK 6541230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Moraru.

Ethics declarations

The authors state that they do not have any conflicts of interest.

Additional information

Translated by O. Lotova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraru, V.N., Bondarenko, B.I., Sidorenko, S.V. et al. Nanofluids for Power Engineering: The Mechanism of the Influence of Dispersing Agents on the Thermal Parameters and Crisis Phenomena during Boiling. Tech. Phys. 65, 163–173 (2020). https://doi.org/10.1134/S1063784220020140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220020140

Navigation