Skip to main content
Log in

Resistivity of Thin Carbon Films with Different sp-Bonds Fractions

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Carbon films with different extents of sp hybridization have been grown by ion–plasma pulsed arc sputtering of graphite in a methane atmosphere. Using Raman scattering and transmission electron microscopy data, it has been shown that the content of the phase including carbon chains with sp hybridization grows with increasing methane concentration in the working volume. The resistivity of carbon films correlates well with the fraction of sp-hybridized carbon in the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Chhowalla, A. C. Ferrari, J. Robertson, and G. A. J. Amaratunga, Appl. Phys. Lett. 76, 1419 (2000). https://doi.org/10.1063/1.126050

    Article  ADS  Google Scholar 

  2. T. F. Zhang, Q. Y. Deng, B. Liu, and B. J. Wu, Surf. Coat. Technol. 273, 12 (2015). https://doi.org/10.1016/j.surfcoat.2015.03.031

    Article  Google Scholar 

  3. T. S. Santra, T. K. Bhattacharyya, P. Patel, F. G. Tseng, and T. K. Barik, in Microelectromechanical Systems and Devices (InTech, 2012), p. 459. https://doi.org/10.5772/29671

    Google Scholar 

  4. J. Moers, S. Trellenkamp, M. Goryll, M. Marso, A. van der Hart, S. Hogg, et al., Microelectron. Eng. 64, 465 (2002). https://doi.org/10.1016/S0167-9317(02)00822-5

    Article  Google Scholar 

  5. A. Grill, Thin Solid Films 355356, 189 (1999). https://doi.org/10.1016/S0040-6090(99)00516-7

  6. M. T. Allen, O. Shtanko, I. C. Fulga, A. Akhmerov, K. Watanabi, T. Taniguchi, P. Jarillo-Herrero, L. S. Levitov, and A. Yacoby, Nat. Phys 12, 128 (2016). https://doi.org/10.1038/nphys3534

    Article  Google Scholar 

  7. L. Banszerus, M. Schmitz, S. Engels, M. Goldsche, K. Watanabe, T. Taniguchi, et al., Nano Lett. 16, 1387 (2016). https://doi.org/10.1021/acs.nanolett.5b04840

    Article  ADS  Google Scholar 

  8. C. S. Casari and A. Milani, MRS Commun. 8, 207 (2018). https://doi.org/10.1557/mrc.2018.48

    Article  Google Scholar 

  9. O. Cretu, A. R. Botello-Mendez, I. Janowska, C. Pham-Huu, J.-C. Charlier, and F. Banhart, Nano Lett. 13, 3487 (2013). https://doi.org/10.1021/nl4018918

    Article  ADS  Google Scholar 

  10. F. Ben Romdhane, J.-J. Adjizian, J.-C. Charlier, and F. Banhart, Carbon 122, 92 (2017). https://doi.org/10.1016/j.carbon.2017.06.039

    Article  Google Scholar 

  11. Y. Liu and E. Meletis, J. Mater. Sci. 32, 3491 (1997). https://doi.org/10.1023/A:1018641304944

    Article  ADS  Google Scholar 

  12. V. Babaev, M. Guseva, N. Novikov, N. Savchenko, and V. Khvostov, Nanotekhnol.: Razrab., Primen. XXI Vek 2 (1), 88 (2010).

    Google Scholar 

  13. J. C. W. Chien, Polyacetylene. Chemistry, Physics, and Material Science (Academic, Orlando, 1984).

    Google Scholar 

  14. V. Enkelmann, in Polydiacetylenes, Ed. by H.-J. Cantow (Springer, 1984), p. 91. https://doi.org/10.1007/bfb0017652

    Google Scholar 

  15. A. Ferrari and J. Robertson, Philos. Trans. R. Soc. London A 362, 2477 (2004). https://doi.org/10.1098/rsta.2004.1452

    Article  ADS  Google Scholar 

  16. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007). https://doi.org/10.1039/b613962k

    Article  Google Scholar 

  17. A. Shchegolikhin and O. Lazareva, Biomol. Spectrosc. 53, 67 (1997). https://doi.org/10.1016/s1386-1425(97)83010-7

    Article  Google Scholar 

  18. L. Shi, P. Rohringer, K. Suenaga, et al., Nat. Mater. 15, 634 (2016). https://doi.org/10.1038/nmat4617

    Article  ADS  Google Scholar 

  19. A. Milani, A. Lucotti, and V. Russo, J. Phys. Chem. C 115, 12836 (2011). https://doi.org/10.1021/jp203682c

    Article  Google Scholar 

  20. A. Lucotti, M. Tommasini, and M. Del Zoppo, Chem. Phys. Lett. 417, 78 (2006). https://doi.org/10.1016/j.cplett.2005.10.016

    Article  ADS  Google Scholar 

  21. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004). https://doi.org/10.1103/PhysRevB.70.195207

  22. D. K. Blanks, R. N. Bicknell, N. C. Giles-Taylor, J. F. Schetzina, A. Petrou, and J. Warnock, J. Vac. Sci. Technol. A 4, 2120 (1986). https://doi.org/10.1116/1.574040

    Article  ADS  Google Scholar 

  23. N. Tsukada, T. Kikuta, and K. Ishida, Phys. Rev. B 33, 8859(R) (1986).

  24. K. Goasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, Appl. Phys. Lett. 104, 092106 (2014). https://doi.org/10.1063/1.4867502

    Article  ADS  Google Scholar 

  25. M. O. Manasreh and B. C. Covington, Phys. Rev. B 35, 2524(R) (1987). https://doi.org/10.1103/PhysRevB.35.2524

  26. A. T. Collins, S. C. Lawson, G. Davies, and H. Kanda, Phys. Rev. Lett. 65, 891 (1990). https://doi.org/10.1103/physrevlett.65.891

    Article  ADS  Google Scholar 

  27. H. Watanabe, K. Hayashi, D. Takeuchi, S. Yamanaka, H. Okushi, K. Kajimura, and T. Sekiguchi, Appl. Phys. Lett. 73, 981 (1998). https://doi.org/10.1063/1.122059

    Article  ADS  Google Scholar 

  28. J. A. Weima, A. M. Zaitsev, R. Job, G. C. Kosaca, F. Blum, G. Grabosch, and J. Knopp, in Proc. 25th Annual Conf. of the IEEE Industrial Electronics Society, San Jose,1999. https://doi.org/10.1109/iecon.1999.822170

  29. A. V. Bazhenov, V. V. Kveder, A. A. Maksimov, I. I. Tartakovskii, R. A. Oganyan, Y. A. Ossipyan, and A. I. Shalynin, J. Exp. Theor. Phys. 86, 1030 (1998). https://doi.org/10.1134/1.558550

    Article  ADS  Google Scholar 

  30. V. V. Brazhkin, A. G. Lyapin, and S. V. Popova, JETP Lett. 76, 681 (2002). https://doi.org/10.1134/1.1545583

    Article  ADS  Google Scholar 

  31. L. Ravagnan, P. Piseri, M. Bruzzi, S. Miglio, G. Bongiorno, A. Baserga, et al., Phys. Rev. Lett. 98, 216103 (2007). https://doi.org/10.1103/physrevlett.98.216103

    Article  ADS  Google Scholar 

  32. R. D. Mansano, M. Massi, P. Verdonck, and P. M. Nogueira, Superficies Vacio 9, 111 (1999).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation, contract no 14.625.21.0041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zavidovskii.

Ethics declarations

The authors claim that they do not have any conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavidovskii, I.A., Streletskii, O.A., Nishchak, O.Y. et al. Resistivity of Thin Carbon Films with Different sp-Bonds Fractions. Tech. Phys. 65, 139–144 (2020). https://doi.org/10.1134/S1063784220010272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220010272

Navigation