Skip to main content
Log in

Formation of Low-Resistivity Au/Mo/Ti Ohmic Contacts to p-Diamond Epitaxial Layers

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The formation of Au/Mo/Ti ohmic contacts to p-diamond epitaxial films has been studied. Specifically, the influence of annealing on the electrical properties and structure of contacts has been investigated. It has been shown that the upper gold layer protects the contact system against oxidation up to 850°C during RTA unlike the case of a “simplified” Au-free Mo/Ti system frequently used in today’s solutions. In Mo-free Au/Ti systems, high-temperature annealing causes effective diffusion of titanium into the gold layer, which deteriorates the protective properties of the latter and enhances oxygen diffusion toward the interface with diamond. Oxidation of the Ti/C contact area prevents the formation of a titanium carbide conducting layer, which has high adhesion to diamond. The role of various factors, namely, annealing to form titanium carbide, heavy doping of diamond with boron, and crystal perfection of diamond films, in lowering the contact resistance, has been estimated. For doped epitaxial films grown on single-sector substrates, unalloyed ohmic contacts with a record low contact resistance of 4 × 10–7 Ω/cm2 have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, et al., Adv. Electron. Mater 4, 1600501 (2018). https://doi.org/10.1002/aelm.201600501

    Article  Google Scholar 

  2. Power Electronics Device Applications of Diamond Semiconductors, Ed. by S. Koizumi, H. Umezawa, J. Pernot, and M. Suzuki (Elsevier, 2018).

    Google Scholar 

  3. T. V. Blank and Yu. A. Gol’dberg, Semiconductors 41, 1263 (2007).

    Article  ADS  Google Scholar 

  4. J. F. Prins, J. Phys. D: Appl. Phys. 22, 1562 (1989).

    Article  ADS  Google Scholar 

  5. R. Kalish, Appl. Surf. Sci. 117/118, 558 (1997).

    Article  ADS  Google Scholar 

  6. V. Venkatesan, D. M. Malta, K. Das, and A. M. Belu, J. Appl. Phys. 74, 1179 (1993).

    Article  ADS  Google Scholar 

  7. J. C. Pinero, M. P. Villar, D. Araujo, J. Montserrat, B. Antunez, and P. Godignon, Phys. Status Solidi A 214, 1700230 (2017). https://doi.org/10.1002/pssa.201700230

    Article  ADS  Google Scholar 

  8. T. Tachibana, B. E. Williams, and J. T. Glass, Phys. Rev. B 45, 11975 (1992).

    Article  ADS  Google Scholar 

  9. J. Nakanishi, A. Otsuki, T. Oku, O. Ishiwata, and M. Murakami, J. Appl. Phys. 76, 2293 (1994).

    Article  ADS  Google Scholar 

  10. M. Yokoba, Y. Koide, A. Otsuki, F. Ako, T. Oku, and M. Murakami, J. Appl. Phys. 81, 6815 (1997).

    Article  ADS  Google Scholar 

  11. P. E. Viljoen, E. S. Lambers, and P. H. Holloway, J. Vac. Sci. Technol. B 12, 2997 (1994). https://doi.org/10.1116/1.587549

    Article  Google Scholar 

  12. K. L. Moazed, J. R. Zeidler, and M. J. Taylor, J. Appl. Phys. 68, 2246 (1990).

    Article  ADS  Google Scholar 

  13. Y. Chen, M. Ogura, S. Yamasaki, and H. Okushi, Semicond. Sci. Technol. 20, 860 (2005). https://doi.org/10.1088/0268-1242/20/8/041

    Article  ADS  Google Scholar 

  14. S. Kono, T. Teraji, H. Kodama, K. Ichikawa, S. Ohnishi, and A. Sawabe, Diamond Related Mater. 60, 117 (2015). https://doi.org/10.1016/j.diamond.2015.10.028

    Article  ADS  Google Scholar 

  15. D. Zhao, F. N. Li, Z. C. Liu, X. D. Chen, Y. F. Wang, G. Q. Shao, T. F. Zhu, M. H. Zhang, J. W. Zhang, J. J. Wang, W. Wang, and H. X. Wang, Appl. Surf. Sci. 443, 361 (2018). https://doi.org/10.1016/j.apsusc.2018.03.015

    Article  ADS  Google Scholar 

  16. W. P. Leroy, C. Detavernier, R. L. van Meirhaeghe, A. J. Kellock, and C. Lavoie, J. Appl. Phys. 99, 063704 (2006). https://doi.org/10.1063/1.2180436

    Article  ADS  Google Scholar 

  17. W. P. Leroy, C. Detavernier, R. L. van Meirhaeghe, and C. Lavoie, J. Appl. Phys. 101, 053714 (2007). https://doi.org/10.1063/1.2561173

    Article  ADS  Google Scholar 

  18. S. Ohmagari, T. Matsumoto, H. Umezawa, and Y. Mokuno, MRS Adv. 1, 3489 (2016). https://doi.org/10.1557/adv.2016.471

    Article  Google Scholar 

  19. F. Fang, C. A. Hewett, M. G. Fernandes, and S. S. Lau, IEEE Trans. Electron Devices 36, 1783 (1989).

    Article  ADS  Google Scholar 

  20. M. Werner, O. Dorsch, H.-U. Baerwind, E. Obermeier, C. Johnston, P. R. Chalker, and S. Romani, IEEE Trans. Electron Devices 42, 1334 (1995).

    ADS  Google Scholar 

  21. M. Werner, Semicond. Sci. Technol. 18, 41 (2003). https://doi.org/10.1088/0268-1242/18/3/306

    Article  ADS  Google Scholar 

  22. G. R. Brandes, C. P. Beetz, C. F. Feger, R. W. Wright, and J. L. Davidson, Diamond Relat. Mater. 8, 1936 (1999).

    Article  ADS  Google Scholar 

  23. G. Civrac, S. Msolli, J. Alexis, O. Dalverny, and H. Schneider, Electron. Lett. 46, 791 (2010). https://doi.org/10.1049/el.2010.0803

    Article  Google Scholar 

  24. M. P. Dukhnovskii, A. K. Ratnikova, and Yu. Yu. Fedorov, RF Patent No. 2436189, Byull. Izobret., No. 34 (2011).

  25. L. A. Vikharev, A. M. Gorbachev, M. A. Lobaev, A. B. Muchnikov, D. B. Radishev, V. A. Isaev, V. V. Chernov, S. A. Bogdanov, M. N. Drozdov, and J. E. Butler, Phys. Status Solidi RRL 10, 324 (2016). https://doi.org/10.1002/pssr.201510453

    Article  Google Scholar 

  26. M. N. Drozdov, Yu. N. Drozdov, M. A. Lobaev, and P. A. Yunin, Tech. Phys. Lett. 44, 297 (2018). https://doi.org/10.1134/S106378501804003X

    Article  ADS  Google Scholar 

  27. M. P. Alegre, D. Araujo, A. Fiori, J. C. Pinero, F. Lloret, M. P. Villar, P. Achatz, G. Chicot, E. Bustarret, and F. Jomard, Appl. Phys. Lett. 105, 173103 (2014). https://doi.org/10.1063/1.4900741

    Article  ADS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (grant no. 18-02-00565) and the Russian Science Foundation (grant no. 17-19-01580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Drozdov.

Ethics declarations

The authors claim that they do not have any conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, M.N., Demidov, E.V., Drozdov, Y.N. et al. Formation of Low-Resistivity Au/Mo/Ti Ohmic Contacts to p-Diamond Epitaxial Layers. Tech. Phys. 64, 1827–1836 (2019). https://doi.org/10.1134/S1063784219120041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219120041

Navigation