Skip to main content
Log in

Dispersion Forces between Metal and Dielectric Plates Separated by a Magnetic Fluid

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The formalism of the Lifshitz theory has been used for determining the pressure exerted by dispersion forces between metal and dielectric plates separated by a thin layer of a magnetic fluid. Numerical calculations are performed for gold and quartz glass plates and the magnetic fluid consisting of kerosene and magnetite nanoparticles at room temperature. For this purpose, we have used familiar representations of dielectric properties of gold and quartz glass along the imaginary frequency axis; corresponding representations have also been obtained for magnetite and kerosene. The dispersion pressure has been analyzed as a function of the distance between the plates, the volume fraction of magnetite particles in the magnetic fluid, and their diameter. At large separations between the plates, simple analytic expressions for this pressure have been derived. Possible application of results has been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Mahanty and B. W. Ninham, Dispersion Forces (Academic, London, 1976).

    Google Scholar 

  2. Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988).

    Google Scholar 

  3. V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  4. M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Advances in the Casimir Effect (Oxford Univ. Press, 2015).

    MATH  Google Scholar 

  5. H. B. G. Casimir, Proc. Kon. Ned Akad. Wet. 51, 793 (1948).

    Google Scholar 

  6. V. M. Mostepanenko and N. N. Trunov, Sov. Phys. Usp. 31, 965 (1988).

    Article  ADS  Google Scholar 

  7. V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and Its Applications (Energoatomizdat, Moscow, 1990; Oxford Univ. Press, 1998).

  8. E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).

    Google Scholar 

  9. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961).

    Article  ADS  Google Scholar 

  10. G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009).

    Article  ADS  Google Scholar 

  11. G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Int. J. Mod. Phys. B 25, 171 (2011).

    Article  ADS  Google Scholar 

  12. C.-C. Chang, A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. Lett. 107, 090403 (2011).

    Article  ADS  Google Scholar 

  13. A. A. Banishev, C.-C. Chang, R. Castillo-Garza, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. B 85, 045436 (2012).

    Article  ADS  Google Scholar 

  14. A. A. Banishev, C.-C. Chang, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. B 85, 195422 (2012).

    Article  ADS  Google Scholar 

  15. A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. Lett. 110, 137401 (2013).

    Article  ADS  Google Scholar 

  16. A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and U. Mohideen, Phys. Rev. B 88, 155410 (2013).

    Article  ADS  Google Scholar 

  17. G. Bimonte, D. López, and R. S. Decca, Phys. Rev. B 93, 184434 (2016).

    Article  ADS  Google Scholar 

  18. J. N. Munday, F. Capasso, V. A. Parsegian, and S. M. Bezrukov, Phys. Rev. A 78, 032109 (2008).

    Article  ADS  Google Scholar 

  19. J. N. Munday, F. Capasso, and V. A. Parsegian, Nature 457, 170 (2009).

    Article  ADS  Google Scholar 

  20. A. W. Rodriguez, F. Capasso, and S. G. Johnson, Nat. Photonics 5, 211 (2011).

    Article  ADS  Google Scholar 

  21. E. V. Blagov, Yu. N. Moiseev, V. M. Mostepanenko, A. Yu. Musatenko, V. I. Panov, S. V. Savinov, and I. Yu. Sokolov, Tech. Phys. 39, 49 (1994).

    Google Scholar 

  22. Yu. N. Moiseev, V. M. Mostepanenko, V. I. Panov, and I. Yu. Sokolov, Tech. Phys. 35, 84 (1990).

    Google Scholar 

  23. A. I. Volokitin and B. N. J. Persson, Phys.-Usp. 50, 879 (2007).

    Article  Google Scholar 

  24. G. V. Dedkov and A. A. Kyasov, Tech. Phys. 59, 616 (2014).

    Article  Google Scholar 

  25. J. Philip and J. M. Laskar, J. Nanofluids 1, 320 (2012).

  26. L. Mao, S. Elborai, X. He, M. Zahn, and H. Koser, Phys. Rev. B 84, 104431 (2011).

    Article  ADS  Google Scholar 

  27. W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, Appl. Phys. Lett. 103, 151101 (2013).

    Article  ADS  Google Scholar 

  28. A. V. Prokofiev, E. K. Nepomnyashchaya, I. V. Pleshakov, Yu. I. Kuzmin, E. N. Velichko, and E. T. Aksenov, in Next Generation Networks and Systems, Ed. by O. Galinina, S. Balandin, and Y. Koucheryavy (Springer, Cham, 2016), p. 680.

    Google Scholar 

  29. E. K. Nepomnyashchaya, E. N. Velichko, I. V. Pleshakov, E. T. Aksenov, and E. A. Savchenko, J. Phys.: Conf. Ser. 841, 012020 (2017).

    Google Scholar 

  30. R. E. Rosensweig, Ferrohydrodynamics (Cambridge Univ. Press, 1985).

    Google Scholar 

  31. C. Goubault, P. Jop, M. Fermigier, J. Baudry, E. Bertrand, and J. Bibette, Phys. Rev. Lett. 91, 260802 (2003).

    Article  ADS  Google Scholar 

  32. N. Pekas, M. D. Porter, M. Tondra, A. Popple, and A. Jander, Appl. Phys. Lett. 85, 4783 (2004).

    Article  ADS  Google Scholar 

  33. D. W. Inglis, R. Riehn, R. H. Austin, and J. C. Sturm, Appl. Phys. Lett. 85, 5093 (2004).

    Article  ADS  Google Scholar 

  34. V. Saga and T. Nakamura, J. Appl. Phys. 91, 7003 (2002).

    Article  ADS  Google Scholar 

  35. B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. B 81, 104101 (2010).

    Article  ADS  Google Scholar 

  36. G. L. Klimchitskaya and V. M. Mostepanenko, Phys. Rev. B 94, 045404 (2016).

    Article  ADS  Google Scholar 

  37. G. L. Klimchitskaya and V. M. Mostepanenko, Phys. Rev. A 89, 052512 (2014).

    Article  ADS  Google Scholar 

  38. D. B. Hough and L. R. White, Adv. Colloid Interface Sci. 14, 3 (1980).

    Article  Google Scholar 

  39. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, New York, 1980).

    Google Scholar 

  40. A. Schlegel, S. F. Alvarado, and P. Wachter, J. Phys. C: Solid State Phys. 12, 1157 (1979).

    Article  ADS  Google Scholar 

  41. P. C. Fannin, C. N. Marin, I. Malaescu, and N. Stefu, J. Phys.: Condens. Matter 19, 036104 (2007).

    ADS  Google Scholar 

  42. C.-Y. Hong, I. J. Jang, H. E. Horng, C. J. Hsu, Y. D. Yao, and H. C. Yang, J. Appl. Phys. 81, 4275 (1997).

    Article  ADS  Google Scholar 

  43. H. Qi, X. Zhang, M. Jiang, Q. Wang, and D. Li, Optik 127, 8899 (2016).

    Article  ADS  Google Scholar 

  44. A. H. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engineers, London, 1999).

  45. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).

  46. S. van Berkum, J. T. Dee, A. P. Philipse, and B. E. Erné, Int. J. Mol. Sci. 14, 10162 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. N. Velichko, G. L. Klimchitskaya or V. M. Mostepanenko.

Ethics declarations

The authors claim that they have no conflicts of interests.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velichko, E.N., Klimchitskaya, G.L. & Mostepanenko, V.M. Dispersion Forces between Metal and Dielectric Plates Separated by a Magnetic Fluid. Tech. Phys. 64, 1260–1266 (2019). https://doi.org/10.1134/S1063784219090214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219090214

Keywords:

Navigation