Skip to main content
Log in

Effect of Air Pressure on Parameters of Beam Current and X-Ray Radiation Generated in a Gas Diode

  • ELECTROPHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Parameters of a beam of runaway electrons and X-ray radiation generated in a gas diode at different atmospheric pressures are studied. It is shown that the maximum beam currents and intensities of X-ray radiation are generated at an air pressure of about 102 Pa. Distribution of beam electrons with respect to energy is determined by the method of  attenuation of beam current using aluminum filters with different thicknesses. The maximum of such a distribution corresponds to an electron energy of about 100 keV. The maximum exposure dose of X-ray radiation behind a copper-foil anode with a thickness of 30 μm is about 107 mR. It is shown that the beam electrons absorbed by elements of an X-ray detector affect the shape and amplitude of the desired signal at beam currents of greater than 35 A/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. R. Pierce, Theory and Design of Electron Beams (D. Van Nostrand Co., New York, 1954).

    Google Scholar 

  2. F. Hegeler, M. Friedman, M. C. Myers, J. D. Sethian, and S. B. Swanekamp, Phys. Plasmas 9, 4309 (2002). https://doi.org/10.1063/1.1506925

    Article  ADS  Google Scholar 

  3. G. A. Mesyats, Pulsed Power Engineering and Electronics (Nauka, Moscow, 2004).

    Google Scholar 

  4. E. M. Oks, Electron Sources with a Plasma Cathode: Physics, Technology, Application (Izd. Nauchno-tekh. Lit., Tomsk, 2005).

    Google Scholar 

  5. S. E. Tsimring, Electron Beams and Microwave Vacuum Electronics (Wiley, Hoboken, 2006).

    Book  Google Scholar 

  6. L. V. Tarasova, L. N. Khudyakova, T. V. Loiko, and V. A. Tsukerman, Zh. Tekh. Fiz. 44, 564 (1974).

    Google Scholar 

  7. Yu. L. Stankevich and V. G. Kalinin, Dokl. Akad. Nauk SSSR 177, 72 (1967).

    Google Scholar 

  8. R. C. Noggle, E. P. Krider, and J. R. Wayland, J. Appl. Phys. 39, 4746 (1968).

    Article  ADS  Google Scholar 

  9. V. F. Tarasenko, V. M. Orlovskii, and S. A. Shunailov, Russ. Phys. J. 46, 325 (2003).

    Article  Google Scholar 

  10. V. F. Tarasenko, S. A. Shunailov, V. G. Shpak, and I. D. Kostyrya, Laser Part. Beams 23, 545 (2005). https://doi.org/10.1017/0S0263034605050731

  11. I. D. Kostyrya, D. V. Rybka, and V. F. Tarasenko, Instrum. Exp. Tech. 55, 72 (2012). https://doi.org/10.1134/S0020441212010071

    Article  Google Scholar 

  12. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, M. I. Lomaev, D. A. Sorokin, and Yu. V. Shut’ko, Tech. Phys. Lett. 36, 375 (2010). https://doi.org/10.1134/S1063785010040255

    Article  ADS  Google Scholar 

  13. E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, Tech. Phys. Lett. 32, 948 (2006). https://doi.org/10.1134/S1063785006110125

    Article  ADS  Google Scholar 

  14. E. I. Lipatov, V. F. Tarasenko, V. M. Orlovskii, S. B. Alekseev, and D. V. Rybka, Tech. Phys. Lett. 31, 231 (2005).

    Article  Google Scholar 

  15. L. P. Babich, K. H. Becker, and T. V. Loiko, IEEE Trans. Plasma Sci. 37, 2261 (2009). https://doi.org/10.1109/TPS.2009.2030577

    Article  ADS  Google Scholar 

  16. E. Kh. Baksht, A. G. Burachenko, and V. F. Tarasenko, Tech. Phys. Lett. 36, 1020 (2010). https://doi.org/10.1134/S1063785010110143

    Article  ADS  Google Scholar 

  17. B. Pourshahab, M. R. Abdi, A. Sadighzadeh, and C. I. Rasouli, Phys. Plasmas 23, 072501 (2016). https://doi.org/10.1063/1.4955218

    Article  Google Scholar 

  18. L. Zeng, Z. Y. Chen, Y. B. Dong, H. R. Koslowski, Y. Liang, Y. P. Zhang, H. D. Zhuang, D. W. Huang, and X. Gao, Nucl. Fusion 57, 046001 (2017). https://doi.org/10.1088/1741-4326/aa57d9

    Article  ADS  Google Scholar 

  19. M. Rubel, S. Brezinsek, J. W. Coenen, A. Huber, A. Kirschner, A. Kreter, P. Petersson, V. Philipps, A. Pospieszczyk, B. Schweer, G. Sergienko, T. Tanabe, Y. Ueda, and P. Wienhold, Matter Radiat. Extremes 2 (3), 87 (2017). https://doi.org/10.1016/j.mre.2017.03.002

    Google Scholar 

  20. J. Zebrowski, L. Jakubowski, M. Rabinski, M. J. Sadowski, M. J. Jakubowski, R. Kwiatkowski, K. Malinowski, R. Mirowski, J. Mlynar, O. Ficker, V. Weinzettl, and F. Causa, J. Phys.: Conf. Ser. 959, 012002 (2018). https://doi.org/10.1088/1742-6596/959/1/012002

    Google Scholar 

  21. M. J. Sadowski, Nukleonika 56 (2), 85 (2011).

    Google Scholar 

  22. P. V. Savrukhin and E. A. Shestakov, Nucl. Fusion 55, 043016 (2015). https://doi.org/10.1088/0029-5515/55/4/043016

    Article  ADS  Google Scholar 

  23. D. A. Sorokin, A. G. Burachenko, D. V. Beloplotov, V. F. Tarasenko, E. Kh. Baksht, E. I. Lipatov, and M. I. Lomaev, J. Appl. Phys. 122, 154902 (2017). https://doi.org/10.1063/1.4996965

    Article  ADS  Google Scholar 

  24. S. B. Alekseev, E. Kh. Baksht, A. M. Boichenko, I. D. Kostyrya, V. F. Tarasenko, and A. N. Tkachev, Tech. Phys. 57, 1192 (2012). https://doi.org/10.1134/S1063784212090022

    Article  Google Scholar 

  25. G. A. Mesyats, S. D. Korovin, V. V. Rostov, V. G. Shpak, and M. I. Yalandin, Proc. IEEE 92, 1166 (2004). https://doi.org/10.1109/JPROC.2004.829005

    Article  Google Scholar 

  26. A. V. Kozyrev, V. Yu. Kozhevnikov, M. S. Vorobyev, E. Kh. Baksht, A. G. Burachenko, N. N. Koval, and V. F. Tarasenko, Laser Part. Beams 33, 183 (2015). https://doi.org/10.1017/S0263034615000324

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Shishlov for providing the detector based on diamond crystal.

Funding

This work was supported by the Russian Science Foundation (project no. 18-19-00184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Lomaev.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomaev, M.I., Tarasenko, V.F. & Baksht, E.K. Effect of Air Pressure on Parameters of Beam Current and X-Ray Radiation Generated in a Gas Diode. Tech. Phys. 64, 1200–1204 (2019). https://doi.org/10.1134/S1063784219080115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219080115

Navigation