Skip to main content
Log in

Mechanisms of Current Transport and Resistive Switching in Capacitors with Yttria-Stabilized Hafnia Layers

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The peculiarities of resistive switching in capacitors with yttria-stabilized hafnia layers were studied. The characteristics of current transport in the initial state and after electroforming and resistive switching at different temperatures were examined. The parameters of a small-signal equivalent circuit of a capacitor were determined for switching into low- and high-resistance states. These parameters suggest that the resistance of filaments changes after each successive switching. This provides an opportunity to use such measurements to determine the nature of resistive switching and verify the reproducibility of its parameters. The contribution of electron traps to switching was revealed. Ion migration polarization was observed at temperatures above 500 K, and the activation energy of ion migration and the ion concentration were determined. The effect of resistive switching under the influence of temperature was observed and interpreted for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. A. Shchuka, Nanoelectronics (BINOM, Moscow, 2012).

    Google Scholar 

  2. H. Wong and H. Iwai, Microelectron. Eng. 83, 1867 (2006). https://doi.org/10.1016/j.mee.2006.01.271

    Article  Google Scholar 

  3. R. Micheloni, L. Crippa, and N. Marelli, Inside NAND Flash Memories (Springer, Luxembourg, 2010). https://doi.org/10.1007/978-90-481-9431-5

    Book  Google Scholar 

  4. T. V. Perevalov and V. A. Gritsenko, Phys.-Usp. 53, 561 (2010). https://doi.org/10.3367/UFNe.0180.201006b.0587

    Article  Google Scholar 

  5. V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, Phys. Rep. 613, 1 (2016). https://doi.org/10.1016/j.physrep.2015.11.002

    Article  ADS  MathSciNet  Google Scholar 

  6. S. U. Sharath, S. Vogel, L. Molina-Luna, E. Hildebrandt, C. Wenger, J. Kurian, M. Duerrschnabel, T. Niermann, G. Niu, P. Calka, M. Lehmann, H.-J. Kleebe, T. Schroeder, and L. Alff, Adv. Funct. Mater. 27, 1700432 (2017). https://doi.org/10.1002/adfm.201700432

    Article  Google Scholar 

  7. R. Han, P. Huang, Y. Zhao, Z. Chen, L. Liu, X. Liu, and J. Kang, Nanoscale Res. Lett. 12, 37 (2017). https://doi.org/10.1186/s11671-016-1807-9

    Article  ADS  Google Scholar 

  8. Y.-C. Chen, C.-Y. Lin, H.-C. Huang, S. Kim, B. Fowler, Y.-F. Chang, X. Wu, G. Xu, T.-C. Chang, and J. C. Lee, J. Phys. D: Appl. Phys. 51, 055108 (2018). https://doi.org/10.1088/1361-6463/aaa1b9

    Article  ADS  Google Scholar 

  9. S. G. Dmitriev, Semiconductors 43, 823 (2009). https://doi.org/10.1134/S1063782609060268

    Article  ADS  Google Scholar 

  10. A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, Phys. Rev. B 65, 174117 (2002). https://doi.org/10.1103/PhysRevB.65.174117

    Article  ADS  Google Scholar 

  11. P. T. Oreshkin, Semiconductor and Dielectric Physics (Vysshaya Shkola, Moscow, 1977).

    Google Scholar 

  12. S. V. Tikhov, O. N. Gorshkov, I. N. Antonov, A. P. Kasatkin, D. S. Korolev, A. I. Belov, A. N. Mikhaylov, and D. I. Tetelbaum, Tech. Phys. 61, 745 (2016). https://doi.org/10.1134/S106378421605025X

    Article  Google Scholar 

  13. S. V. Tikhov, A. N. Mikhaylov, A. I. Belov, D. S. Korolev, I. N. Antonov, V. V. Karzanov, O. N. Gorshkov, D.  I. Tetelbaum, P. Karakolis, and P. Dimitrakis, Microelectron. Eng. 187188, 134 (2018). https://doi.org/10.1016/j.mee.2017.11.002

  14. M.-G. Blanchin, B. Canut, Y. Lambert, V. S. Teodorescu, A. Barau, and M. Zaharescu, J. Sol-Gel Sci. Technol. 47, 165 (2008). https://doi.org/10.1007/s10971-008-1758-4

    Article  Google Scholar 

  15. K. Xiong and J. Robertson, Microelectron. Eng. 80, 408 (2005). https://doi.org/10.1016/j.mee.2005.04.098

    Article  Google Scholar 

  16. T. V. Perevalov, Phys. Solid State 60, 423 (2018). https://doi.org/10.1134/S106378341803023X

    Article  ADS  Google Scholar 

  17. F.-C. Chiu, Z.-H. Lin, C.-W. Chang, C.-C. Wang, K.-F. Chuang,  C.-Y. Huang, J. Ya-min Lee,  and H.-L. Hwang, J. Appl. Phys. 97, 034506 (2005). https://doi.org/10.1063/1.1846131

    Article  ADS  Google Scholar 

  18. S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P.-Yu. Chen, H. Yeon, S. Yu, and J. Kim, Nat. Mater. 17, 335 (2018). https://doi.org/10.1038/s41563-017-0001-5

    Article  ADS  Google Scholar 

  19. S. V. Tikhov, M. N. Koryazhkina, O. N. Gorshkov, A. P. Kasatkin, I. N. Antonov, and A. I. Morozov, in Proc. XXI Symp. “Nanophysics and Nanoelectronics,” Nizhny Novgorod, Russia, 2017, Vol. 2, p. 738.

  20. M. A. Rizakhanov, G. M. Gasanbekov, and M. K. Sheinkman, Fiz. Tekh. Poluprovodn. 9, 779 (1975).

    Google Scholar 

  21. S. Starschich, S. Menzel, and V. Bottger, Appl. Phys. Lett. 108, 032903 (2016). https://doi.org/10.1063/1.4940370

    Article  ADS  Google Scholar 

  22. M. Lampert and P. Mark, Injection Currents in Solids (Academic, New York, 1969).

    Google Scholar 

  23. L. S. Berman and A. A. Lebedev, Deep-Level Transient Spectroscopy of Semiconductors (Nauka, Leningrad, 1981).

    Google Scholar 

Download references

Funding

This study was supported by a grant from the Government of the Russian Federation for state support of scientific research supervised by leading scholars (contract no. 074-02-2018-330(2)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Koryazhkina.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhov, S.V., Gorshkov, O.N., Belov, A.I. et al. Mechanisms of Current Transport and Resistive Switching in Capacitors with Yttria-Stabilized Hafnia Layers. Tech. Phys. 64, 873–880 (2019). https://doi.org/10.1134/S1063784219060227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219060227

Navigation