Skip to main content
Log in

Impact of Ultraviolet Irradiation on Stress–Strain Behavior of Syndiotactic 1,2-Polybutadien: The Role of Oxidation

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We studied the impact of ultraviolet (UV) irradiation on stress–strain characteristics, derived from uniaxial stretching measurements, and the molecular structure (photoinduced changes) of syndiotactic 1,2-polybutadien, a polymer with thermoplastic elastomer properties. Uniaxial stretching stress–strain curves are recorded for samples subjected to UV irradiation for different times and the effects UV irradiation has on the stress–strain behavior of polymers are analyzed. Long UV irradiation is found to markedly increase the hardening of polymers: Young’s modulus and yield strength increase, while the fracture strain decreases. At the same time, we observe a sharp increase in polymer molecular weight and its considerable oxidation that particularly involves surface layers. The mechanisms of cross-linking between macromolecules and their simultaneous oxidation induced by exposure to UV light are discussed along with the role these processes play in evolution of the physical mechanical properties under UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. G. Drobny, Handbook of Thermoplastic Elastomers (Elsevier, 2014).

    Google Scholar 

  2. R. Shanks and I. Kong, in Thermoplastic Elastomers, Ed. by A. Z. El-Sonbati (InTech, 2012), p. 137.

    Book  Google Scholar 

  3. P. Antony and S. K. De, J. Macromol. Sci., Part C 41, 41 (2001).

    Article  Google Scholar 

  4. http://www.jsr.co.jp/jsr_e/pd/tpe_rb.shtml.

  5. G. Natta and P. Corradini, J. Polym. Sci. 20, 251 (1956).

    Article  ADS  Google Scholar 

  6. Y. Obata, C. Homma, C. Tosaki, and N. Shiraishi, Polym. J. 7, 217 (1975).

    Article  Google Scholar 

  7. Y. Chen, D. Yang, Y. Hu, and X. Zhang, Cryst. Growth Des. 4, 117 (2004).

    Article  Google Scholar 

  8. A. von Raven and H. Heusinger, J. Polym. Sci., Polym. Lett. Ed. 12, 2255 (1974).

    Google Scholar 

  9. H. Okamoto and T. Iwai, J. Appl. Polym. Sci. 23, 1893 (1979).

    Article  Google Scholar 

  10. J. Cai, Q. Yu, X. Zhang, J. Lin, and L. Jiang, J. Polym. Sci. Part B 43, 2885 (2005).

    Article  Google Scholar 

  11. A. N. Chuvyrov, R. R. Kinzyabulatov, and Yu. A. Lebedev, Dokl. Chem. 437, 124 (2011).

    Article  Google Scholar 

  12. M. Farber and J. R. Worns, US Patent No. 4394435 (1983).

  13. A. N. Chuvyrov and R. K. Teregulov, Tech. Phys. Lett. 34, 728 (2008).

    Article  ADS  Google Scholar 

  14. T. Carlson, Photoelectron and Auger Spectroscopy (Springer, New Yorker, 1975).

  15. D. A. Shirley, Phys. Rev. B 5, 4709 (1972).

    Article  ADS  Google Scholar 

  16. A. R. Khamidullin, A. N. Chuvyrov, Yu. A. Lebedev, and V. D. Sitdikov, Moscow Univ. Phys. Bull. 68, 225 (2013).

    Article  ADS  Google Scholar 

  17. J. Guillet, Polymer Photophysics and Photochemistry (Univ. Press, Cambridge, 1985).

    Google Scholar 

  18. V. T. Kagiya and K. Takemoto, J. Macromol. Sci. A 10, 795 (1976).

    Article  Google Scholar 

  19. C. Adam, J. Lacoste, and J. Lemaire, Polym. Degrad. Stab 26, 269 (1989).

    Article  Google Scholar 

  20. R. L. Clough and K. T. Gillen, Polym. Degrad. Stab. 38, 47 (1992).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was partially supported by the Russian Foundation for Basic Research (project no. 17-08-00974). The experimental studies were carried out using the facilities of the Shared Access Center Spektr, Institute of Molecule and Crystal Physics, Ufa Scientific Center, Russian Academy of Sciences, the regional Shared Access Center Agidel, Institute of Molecule and Crystal Physics, Ufa Scientific Center, Russian Academy of Sciences and the Shared Access Center Nanostructured Materials and High Technologies, Ufa State Aviation Technical University. The authors are grateful to V. V. Kaichev (Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences) for recording a number of XPS spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Kinzyabulatov.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, Y.A., Kinzyabulatov, R.R., Astanin, V.V. et al. Impact of Ultraviolet Irradiation on Stress–Strain Behavior of Syndiotactic 1,2-Polybutadien: The Role of Oxidation. Tech. Phys. 64, 475–479 (2019). https://doi.org/10.1134/S1063784219040157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219040157

Navigation