Skip to main content
Log in

Differential Characteristics of the Overexpanded Gas Jet Flow Field in the Vicinity of the Nozzle Edge

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A parametric study of the features of the flow field of a plane and axisymmetric overexpanded ideal gas jet in the vicinity of the nozzle edge has been conducted over the entire theoretically admissible range of determining parameters (nozzle divergence angles, exhaust Mach numbers, jet incalculabilities, and gas adiabat indicators). The exhaust parameters that correspond to the extremes of the differential characteristics of a shockwave falling (descending) from the edge and the flow field behind it have been revealed. A significant difference in the character of changes in the characteristics of the shockwave and the flow field behind it depending on the type of symmetry of the gas jet has been found and studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. Zapryagaev, V. Pickalov, N. Kiselev, and A. Nepomnyashchiy, Theor. Comput. Fluid Dyn. 18, 301 (2004).

    Article  Google Scholar 

  2. N. P. Kiselev, Candidate’s Dissertation in Mathematics and Physics (Inst. of Theoretical and Applied Mechanics, Novosibirsk, 2007).

  3. W. S. Saric, Annu. Rev. Fluid Mech. 26, 379 (1994).

    Article  ADS  Google Scholar 

  4. A. Sescu and D. Thompson, Theor. Comput. Fluid Dyn. 29, 67 (2015).

    Article  Google Scholar 

  5. J.-M. Lucas, O. Vermeersch, and D. Arnal, Eur. J. Mech., B/Fluids 50, 132 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  6. N. M. Terekhova, Dokl. Phys. 41, 179 (1996).

    ADS  Google Scholar 

  7. V. N. Glaznev, V. I. Zapryagaev, V. N. Uskov, N. M. Terekhova, V. K. Erofeev, V. V. Grigor’ev, A. O. Kozhemyakin, V. A. Kotenok, and A. V. Omel’-chenko, Stream and Nonstationary Flows in Gas Dynamics (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000).

    Google Scholar 

  8. V. I. Zapryagaev, N. P. Kiselev, and A. A. Pavlov, J. Appl. Mech. Tech. Phys. 45, 335 (2004).

    Article  ADS  Google Scholar 

  9. E. I. Vasil’ev and A. N. Kraiko, Comput. Math. Math. Phys. 39, 1335 (1999).

    MathSciNet  Google Scholar 

  10. V. N. Uskov and M. V. Chernyshov, J. Appl. Mech. Tech. Phys. 47, 492 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. F. Gorshkov and V. N. Uskov, J. Appl. Mech. Tech. Phys. 43, 678 (2002).

    Article  ADS  Google Scholar 

  12. A. L. Adrianov, A. L. Starykh, and V. N. Uskov, Interference of Stationary Gas-Dynamic Discontinuities (Nauka, Novosibirsk, 1995).

    Google Scholar 

  13. V. N. Uskov and P. S. Mostovykh, Shock Waves 26, 693 (2016).

    Article  ADS  Google Scholar 

  14. W. F. Brown, J. Math. Phys. 29, 252 (1950).

    Article  Google Scholar 

  15. D. Eckert, Z. Angew. Math. Mech. 55, 281 (1975).

    Article  MathSciNet  Google Scholar 

  16. G. Emanuel and H. Hekiri, Shock Waves 17, 85 (2007).

    Article  ADS  Google Scholar 

  17. S. Molder, Shock Waves 26, 337 (2016).

    Article  ADS  Google Scholar 

  18. G. Emanuel, Shock Waves Dynamics: Derivatives and Related Topics (CRC Press, Boca Raton, 2012).

    Book  Google Scholar 

  19. N. N. Smirnov, V. F. Nikitin, and S. Alyari Shurekhdeli, J. Propul. Power 25, 593 (2009).

    Article  Google Scholar 

  20. M. V. Silnikov, M. V. Chernyshov, and V. N. Uskov, Acta Astronaut. 99, 175 (2014).

    Article  ADS  Google Scholar 

  21. M. V. Silnikov and M. V. Chernyshov, Acta Astronaut. 135, 172 (2017).

    Article  ADS  Google Scholar 

  22. V. R. Meshkov, A. V. Omel’chenko, and V. N. Uskov, Vestn. S.-Peterb. Gos. Univ. Ser. I. Mat. Mekh. Astron., No. 2, 101 (2002).

  23. M. V. Silnikov, M. V. Chernyshov, and V. N. Uskov, Acta Astronaut. 97, 38 (2014).

    Article  ADS  Google Scholar 

  24. M. V. Silnikov and M. V. Chernyshov, Acta Astronaut. 109, 248 (2015).

    Article  ADS  Google Scholar 

  25. V. G. Dulov and G. A. Luk’yanov, Gas Dynamics of Flow Processes (Nauka, Novosibirsk, 1984).

    MATH  Google Scholar 

  26. V. S. Avduevskii, E. A. Ashratov, A. V. Ivanov, and U. G. Pirumov, Gas Dynamics of Supersonic Nonisobaric Jets (Mashinostroenie, Moscow, 1989).

    Google Scholar 

  27. K. G. Guderley, The Theory of Transonic Flow (Pergamon, 1962).

    MATH  Google Scholar 

  28. L. G. Gvozdeva, S. A. Gavrenkov, and M. V. Silnikov, Acta Astronaut. 116, 36 (2015).

    Article  Google Scholar 

  29. P. S. Mostovykh and V. N. Uskov, Vestn. S.-Peterb. Gos. Univ. Ser. I. Mat. Mekh. Astron., No. 1, 117 (2012).

  30. F. Edward Ehlers, J. Soc. Ind. Appl. Math. 7, 85 (1959).

    Article  Google Scholar 

  31. O. N. Katskova, I. N. Naumova, Yu. D. Shmyglevskii, and N. P. Shulinshina, Calculation of Planar and Axially Symmetric Supersonic Gas Flows by the Method of Characteristics (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1961).

    Google Scholar 

Download references

FUNDING

The work was supported by the Russian Foundation for Basic Research (project no. 16-08-01228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Chernyshov.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshov, M.V., Gvozdeva, L.G. Differential Characteristics of the Overexpanded Gas Jet Flow Field in the Vicinity of the Nozzle Edge. Tech. Phys. 64, 441–448 (2019). https://doi.org/10.1134/S106378421904008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421904008X

Navigation