Skip to main content
Log in

The flow gradients in the vicinity of a shock wave for a thermodynamically imperfect gas

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Supersonic rotational planar and axisymmetric flows of a non-viscous, non-heat-conductive gas with arbitrary thermodynamic properties in the vicinity of a steady shock wave are studied. The differential equations describing the gas flow upstream and downstream of the discontinuity surface and the dynamic compatibility conditions at this discontinuity are used. The gas flow non-uniformity in the shock vicinity is described by the spatial derivatives of the gasdynamic parameters at a point on the shock surface. The parameters are the gas pressure, density, and velocity vector. The derivatives with respect to the directions of the streamline and normal to it, and of the shock surface and normal to it, are considered. Spatial derivatives of all gasdynamic parameters are expressed through the flow non-isobaric factor along the streamline, the streamline curvature, and the flow vorticity and non-isoenthalpy factors. An algorithm for determining these factors of the gas flow downstream of a shock wave is developed. Example calculations of these factors for imperfect oxygen and thermodynamically perfect gas are presented. The influence coefficients of the upstream flow factors on the downstream flow factors are calculated. The gas flow in the vicinity of the shock is described by the isolines of gasdynamic parameters. Uniform planar and axisymmetric flows at different distances from the axis of symmetry are examined; the isobars, isopycnics, isotachs and isoclines are used to characterize the downstream flow behind a curved shock in an imperfect gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Uskov, V.N.: Interference of steady gasdynamic discontinuities. Col. articles: Supersonic gas jets. Novosibirsk, Nauka (1983) [in Russian]

  2. Adrianov, A.L., Starykh, A.L., Uskov, V.N.: Interference of steady gasdynamic discontinuities. Novosibirsk, Nauka (1995) [in Russian]

  3. Uskov, V.N., Mostovykh, P.S.: Interference of stationary and non-stationary shock waves. Shock Waves 20(2), 119–129 (2010)

    Article  MATH  Google Scholar 

  4. Rankine, W.J.M.: On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. 160, Part II, XV, 277–288 (1870)

  5. Law, C.K.: Diffraction of strong shock waves by a sharp compressive corner. University of Toronto Institute for Aerospace Studies (UTIAS) Technical Note No. 150, July (1970)

  6. Ando, S.: Pseudo-Stationary Oblique Shock Wave Reflection in Carbon Dioxide—Domains and Boundaries. University of Toronto Institute for Aerospace Studies (UTIAS) Technical Note No. 231, April (1981)

  7. Thomas, T.Y.: On curved shock waves. J. Math. Phys. 26, 62–68 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brown, W.F.: The general consistency relations for shock waves. J. Math. Phys. 29, 252–262 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courant, R., Friedrichs, K.O.: Supersonic flow and shock waves. Interscience, New York (1948)

    MATH  Google Scholar 

  10. Lin, C.C., Rubinov, S.J.: On the flow behind curved shocks. J. Math. Phys. 27, 105–129 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckert, D.: Über gekrümmte gasdynamische Wellen in stationären ebenen und rotationssymmetrischen Überschallströmungen. ZAMM 55, 281–289 (1975). [in German]

    Article  MATH  Google Scholar 

  12. Truesdell, C.: On Curved Shocks in Steady Plane Flow of an Ideal Fluid. J. Aero. Sci. 19, 826–828 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  13. D’yakov, S.P.: Interaction of shock waves with small disturbances. I, II. J. Exp. Theor. Phys. 33, 4(10), 948–973 (1957) [in Russian]

  14. Rusanov, V.V.: Derivatives of gasdynamic parameters behind the curved shock wave. Keldysh Inst. Appl. Math. Prepr. 18 (1973) [in Russian]

  15. Mölder, S.: Flow behind curved shock waves. University of Toronto Institute for Aerospace Studies (UTIAS) Report No. 217, September (1979)

  16. Mölder, S.: Curved Aerodynamic Shock Waves. Ph.D. dissertation, McGill Univ., Sept (2012)

  17. Mölder, S.: Curved shock theory. Shock Waves. (2016). doi:10.1007/s00193-015-0589-9 (in press)

  18. Mölder, S., Timofeev, E., Emanuel, G.: Flow behind a concave hyperbolic shock. In: Proceedings of 28th International Symposium on Shock Waves, Manchester, Paper No 2740, pp. 1–6 (2011)

  19. Emanuel, G., Liu, M.-S.: Shock wave derivatives. Phys. Fluids 31, 3625–3633 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Emanuel, G.: Shock Wave Dynamics: Derivatives and Related Topics. CRC Press (2013)

  21. Emanuel, G., Hekiri, H.: Vorticity and its rate of change just downstream of a curved shock. Shock Waves 17, 85–94 (2007)

    Article  MATH  Google Scholar 

  22. Hornung, H.G.: Gradients at a curved shock in reacting flow. Shock Waves J. 8, 11–21 (1998)

    Article  MATH  Google Scholar 

  23. Chernyi, G.G.: Gas Dynamics. CRC Press (1994)

  24. Uskov, V.N., Mostovykh, P.S.: The flow gradients in the vicinity of a shock wave for a thermodynamically imperfect gas. (2014). arXiv:1405.7344 [physics.flu-dyn]

  25. Uskov, V.N., Mostovykh, P.S.: The flow gradients in the vicinity of triple points. In: 21st International Shock Interaction Symposium (ISIS 21) Book of Proceedings, pp. 57–62. Riga, Latvia, August 3–August 8 (2014)

  26. Uskov, V.N., Mostovykh, P.S.: Differential Characteristics of the Gas Flow in the Vicinity of a Shock Wave. In: 23rd International Symposium on Military Aspects of Blast and Shock (MABS 23) CD Proceedings. Paper No. P59. 17, pp. 7–12 September (2014)

  27. Hayes, W.D., Probstein, R.F.: Hypersonic Flow Theory. Academic Press, New York and London (1966)

    MATH  Google Scholar 

  28. Ginsburg, I.P.: Aerogasdynamics. Moscow, V.Sh. (1966) [in Russian]

  29. Mölder, S.: Seventh Congress of the International Congress of the Aeronautical Sciences. ICAS paper No. 70–11 (1970)

  30. Mostovykh, P.S., Uskov, V.N.: Triple-shock-wave configurations: comparison of different thermodynamic models for diatomic gases. In: Proceedings of 28th International Symposium on Shock Waves, Manchester, UK, Paper No. 2597, pp. 1–7 (2011)

  31. McBride, B.J., Heimel, S., Ehlers, J.G., Gordon, S.: Thermodynamic Properties to \(6000^\circ \) K for 210 Substances Involving the First 18 Elements. NASA SP-3001 (1963)

  32. McBride, B.J., Gordon, S., Reno, M.A.: Thermodynamic Data for Fifty Reference Elements. NASA TP-3287 (1993)

  33. Uskov, V.N., Chernyshov, M.V.: Differential characteristics of the flow field in a plane overexpanded jet in the vicinity of the nozzle lip. J. Appl. Mech. Tech. Phys. 47, 366–376 (2006)

  34. Silnikov, M.V., Chernyshov, M.V., Uskov, V.N.: Two-dimensional over-expanded jet flow parameters in supersonic nozzle lip vicinity. Acta Astronaut. 97, 38–41 (2014)

Download references

Acknowledgments

This research is financially supported by the St.-Petersburg State University (Project No 6.50.1556.2013) and the Russian Foundation for Basic Research (Project No 12-08-00826-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Mostovykh.

Additional information

Communicated by A. Hadjadj and A. Higgins.

V. N. Uskov—Deceased.

Appendix: Formulae for the influence coefficients \(A_{ij}\) for thermodynamically perfect gas

Appendix: Formulae for the influence coefficients \(A_{ij}\) for thermodynamically perfect gas

Below the influence coefficients \(A_{ij}\) for a thermodynamically perfect gas are presented. These formulae were previously published in Russian in [1, 2].

$$\begin{aligned} A_{11}= & {} \displaystyle -C_1\frac{1-\varepsilon }{1+\varepsilon } \sqrt{\frac{J+\varepsilon }{(J_m+\varepsilon )^3} [a_p(J_m-J)^2-b_p(J_m-J)+c_p];}\\ A_{12}= & {} \displaystyle -C_1\frac{\chi \, s}{1+\varepsilon } [a_\varTheta (J+\varepsilon )^3+b_\varTheta (J+\varepsilon ) + c_\varTheta ];\\ A_{13}= & {} \chi C_1s \displaystyle {\frac{2(1+\varepsilon J_m)(J+1+2\varepsilon )(J+\varepsilon )}{\gamma (J_m+\varepsilon )};}\\ A_{14}= & {} C_1c(1-\varepsilon )\{[4(J_m-J)(J+\varepsilon ) - (1+\varepsilon J)(J-1)\\&-2(J-1)(J_m-(1-\varepsilon )J)]\sin \varTheta \\&+\chi q(J-1)(1+\varepsilon J)\cos \varTheta \};\\ A_{15}= & {} -\chi C_1(1-\varepsilon )(a_wJ^2-b_wJ-c_w); \\ A_{21}= & {} \displaystyle \chi C_2\frac{s}{J}\left[ f_1+(J_m-1)c^2f_2\frac{1}{\gamma } \right] ;\\ A_{22}= & {} \displaystyle -C_2\frac{c}{J}\left[ \frac{J_m+\varepsilon }{1-\varepsilon }f_1 +(J_m-J)f_2 \right] ;\\ A_{23}= & {} \displaystyle -2C_2\frac{c}{J} \varpi (J+\varepsilon ) [m + (1+\varepsilon )^2J(J_m-J)];\\ A_{24}= & {} \displaystyle \chi C_2 \frac{a}{J}[cf_2\sin \varTheta +\gamma J \sqrt{b}(1+\varepsilon J) \sin (\varTheta +\chi \beta )];\\ A_{25}= & {} \displaystyle C_2\frac{a}{J} \left\{ 2m+J(1+\varepsilon )[(J_m-J) (J+1+2\varepsilon )\right. \\&\left. - (1+\varepsilon J)(J-1)] \right\} , \\ A_{31}= & {} \chi C_3s {\displaystyle \left[ \frac{M^2-1}{\gamma M^2} +\varpi \right] ; \quad A_{32}=-C_3c(\varpi \gamma M^2+q^2);}\\ A_{33}= & {} \displaystyle -C_3c \left[ \varpi +\frac{(1+\varepsilon J)J}{(1-\varepsilon )(J-1)^2 }\right] ;\\ A_{34}= & {} \chi C_3s \sin \varTheta ; \quad A_{35}=C_3q. \end{aligned}$$

Here \(\varepsilon =(\gamma -1)/(\gamma +1)\), \(J_m=(1+\varepsilon )M^2-\varepsilon \),

$$\begin{aligned}&a = [(J_m-J)(J+\varepsilon )]^{1/2}; \quad b=a^2+(1+\varepsilon J)^2;\\&c = [(J+\varepsilon )/(J_m+\varepsilon )]^{1/2}; \quad q = [(J_m-J)/(J+\varepsilon )]^{1/2}; \\&s = [(J_m-J)/(J_m+\varepsilon )]^{1/2}; \\&a_p = (1-\varepsilon )(3J_m-4-\varepsilon ); \\&b_p = (3-2\varepsilon )J_m^2-2(1-\varepsilon +3\varepsilon ^2)J_m-(4+6\varepsilon -3\varepsilon ^2); \\&c_p = (J_m-1)(1+\varepsilon J_m)(J_m+\varepsilon ); \\&C_1 = \gamma [\sqrt{b}(J-1)]^{-1}; \quad C_2=(1-\varepsilon )J [\sqrt{b^3}(J-1)]^{-1}, \\&C_3 = -\sqrt{b}(1-\varepsilon )(J-1)^2 [J(1+\varepsilon J)^2]^{-1};\\&a_\varTheta = (1-\varepsilon )[J_m+\varepsilon -4(1+\varepsilon )]; \\&b_\varTheta = 2(1+\varepsilon )[(1-3\varepsilon )(J_m+\varepsilon ) - 2(1-\varepsilon ^2)]; \\&c_\varTheta = (1+\varepsilon )^2 (1-\varepsilon ) (J_m+\varepsilon );\\&a_w = 3+\varepsilon ; \quad b_w=3J_m-2-3\varepsilon ; \quad c_w=(1+4\varepsilon )J_m+1; \\&f_1 = mJ+2\varpi (J+\varepsilon )[m+(1+\varepsilon )^2(J_m-J)J];\\&f_2 = 2m-\gamma J[(1+\varepsilon J_m)(J+\varepsilon ) - (1-\varepsilon ^2)(J_m-J)]; \\&m = (1+\varepsilon J)[b-(1+\varepsilon )J(1+\varepsilon J)];\\&\varpi = -(1+\varepsilon J_m)[(1+\varepsilon )(J_m+\varepsilon )]^{-1}. \end{aligned}$$

At the Crocco point, the shock wave intensity \(J_c\) is determined from condition \(A_{25}=0\), which leads to an equation

$$\begin{aligned} a_3 J_c^3 +a_2 J_c^2 +a_1 J_c +a_0 =0 \end{aligned}$$

with coefficients

$$\begin{aligned} a_0= & {} -2(1+\varepsilon J_m); \quad a_1=1-3\varepsilon -(1+3\varepsilon +4\varepsilon ^2)J_m; \\ a_2= & {} 4+7\varepsilon +\varepsilon ^2-(1+3\varepsilon )J_m; \quad a_3=1+4\varepsilon +3\varepsilon ^2. \end{aligned}$$

At the constant pressure (Thomas) point, the shock wave intensity \(J_p\) is determined from condition \(A_{15}=0\), which leads to an equation

$$\begin{aligned} (3+\varepsilon ) J_p^2 - (3J_m-2-3\varepsilon ) J_p - (1+(1+4\varepsilon )J_m) = 0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uskov, V.N., Mostovykh, P.S. The flow gradients in the vicinity of a shock wave for a thermodynamically imperfect gas. Shock Waves 26, 693–708 (2016). https://doi.org/10.1007/s00193-015-0606-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-015-0606-z

Keywords

Navigation