Skip to main content
Log in

Elastic Precursor Decay and Spallation in Nonporous Tungsten Carbide Ceramics

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

To identify the possible contribution of relaxation processes to the resistance against high-rate deformation, evolution of shock-compression waves in tungsten carbide (WC) ceramics manufactured by spark-plasma sintering at a maximum compressive stress of 27 GPa is measured. Strong elastic precursor decay upon changing the thickness of the samples from 0.15 to 4 mm is revealed. At maximum shock compressive stresses twice exceeding the Hugoniot elastic limit, a decrease in the spall strength value by about 30% from its value in the elastic region is recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. E. Grady, Mech. Mater. 29, 181 (1998). https://doi.org/10.1016/S0167-6636(98)00015-5

    Article  ADS  Google Scholar 

  2. T. J. Ahrens and G. E. Duvall, J. Geophys. Res. 71, 4349 (1966).

    Article  ADS  Google Scholar 

  3. Z. Rosenberg, N. S. Brar, and S. J. Bless, J. Phys. Colloq. 49 (C3), 707 (1988). https://doi.org/10.1051/jphyscol:19883100

    Article  Google Scholar 

  4. J. Cagnoux and F. Longy, Proc. American Physical Society Topical Conf. “Shock Waves in Condensed Matter,” Monterey, United States, 1987 (Elsevier, Amsterdam, 1988), p. 293.

  5. C. D. Adams, W. W. Anderson, W. R. Blumenthal, and G. T. Gray III, J. Phys.: Conf. Ser. 500, 112001 (2014). https://doi.org/10.1088/1742-6596/500/11/112001

    Google Scholar 

  6. E. B. Zaretsky, J. Appl. Phys. 114, 183518 (2013). https://doi.org/10.1063/1.4830014

    Article  ADS  Google Scholar 

  7. I. Girlitsky, E. Zaretsky, S. Kalabukhov, M. P. Dariel, and N. Frage, J. Appl. Phys 115, 243505 (2014). https://doi.org/10.1063/1.4885436

    Article  ADS  Google Scholar 

  8. A. S. Savinykh, G. I. Kanel, S. V. Razorenov, and V. I. Rumyantsev, Tech. Phys. 58, 973 (2013). https://doi.org/10.1134/S1063784213070207

    Article  Google Scholar 

  9. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann, Adv. Eng. Mater. 16, 830 (2014). https://doi.org/10.1002/adem.201300409

    Article  Google Scholar 

  10. A. S. Savinykh, K. Mandel, S. V. Razorenov, and L.  Krueger, Tech. Phys. 63, 357 (2018). https://doi.org/10.1134/S1063784218030210

    Article  Google Scholar 

  11. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V.  E.  Fortov, Shockwave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).

    Google Scholar 

  12. L. M. Bàrker and R. E. Hollenbàch, J. Appl. Phys. 43, 4669 (1972). https://doi.org/10.1063/1.1660986

    Article  ADS  Google Scholar 

  13. D. P. Dandekar and D. E. Grady, Proc. American Physical Society Conf. “Shock Compression of Condensed Matter,” Atlanta, United States, 2001, Ed. by M. D. Furnish, N. N. Thadhani, and Y. Horie (American Inst. of Physics, 2002), pp. 783–786.

  14. D. E. Grady, Report No. SAND94-3266 (Sandia National Laboratories, Albuquerque, 1995).

  15. D. P. Dandekar, Report No. ARL-TR-3335 (US Army Research Laboratory, Aberdeen Proving Ground, 2004).

Download references

ACKNOWLEDGMENTS

This study was performed in accordance with State Assignment, topic no. 0089-2014-0016, and within the Program of Fundamental Studies of the Presidium of the Russian Academy of Sciences no. 13, “Condensed Matter and Plasma at High Energy Densities, Research Direction Quick Physicochemical Transformations and Fracture of Solid Bodies and Liquids.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Savinykh.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savinykh, A.S., Cherepanov, I.A., Razorenov, S.V. et al. Elastic Precursor Decay and Spallation in Nonporous Tungsten Carbide Ceramics. Tech. Phys. 64, 356–360 (2019). https://doi.org/10.1134/S1063784219030216

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219030216

Navigation