Skip to main content
Log in

Evolution of Shock Waves in Hot-Pressed Ceramics of Boron Carbide and Silicon Carbide

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In this paper we studied the evolution of shock compression waves in hot-pressed ceramics based on boron carbide and silicon carbide at a maximum compressive stress of 32 and 34 GPa, respectively, to determine the possible contribution of relaxation processes to the resistance to high-rate deformation. At a change in sample thickness from 0.5 to 8 mm, an appreciable decay of the elastic precursor was observed in boron carbide while an insignificant anomalous growth of the elastic precursor with a sample thickness was observed in the experiments with silicon carbide samples of various thickness. The measured value of the Hugoniot elastic limit of samples with a thickness of 8 mm was σHEL = 17.2 ± 1.3 GPa for boron carbide and σHEL = 15 ± 0.1 GPa for silicon carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S. S. Semenov, Ceramics for Machine Engineering (Nauchtekhlitizdat, Moscow, 2003).

    Google Scholar 

  2. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shockwave Phenomena in Condensed Media (Yanus-K, Moscow, 1996).

    Google Scholar 

  3. N. V. Saveleva, Yu. V. Bayandin, A. S. Savinykh, G. V. Garkushin, E. A. Lyapunova, S. V. Razorenov, and O. B. Naimark, Tech. Phys. Lett. 41, 579 (2015). doi 10.1134/S1063785015060292

    Article  ADS  Google Scholar 

  4. E. B. Zaretsky, J. Appl. Phys. 114, 183518 (2013). doi 10.1063/1.4830014

    Article  ADS  Google Scholar 

  5. A. S. Savinykh, G. I. Kanel, S. V. Razorenov, and V. I. Rumyantsev, Tech. Phys. 58, 973 (2013). doi 10.1134/S1063784213070207

    Article  Google Scholar 

  6. N. K. Bourne, J. C. F. Millett, and I. Pickup, J. Appl. Phys. 81, 6019 (1997). https://doi.org/10.1063/ 1.363967

    Article  ADS  Google Scholar 

  7. R. Feng, Y. M. Gupta, and G. Yuan, AIP Conf. Proc. 429, 483 (2008). https://doi.org/10.1063/1.55551

    ADS  Google Scholar 

  8. M. E. Kipp and D. E. Grady, Proc. American Physical Society Topical Conf. on Shock Compression of Condensed Matter, Albuquerque, New Mexico, 1989, Ed. by S. C. Schmidt, J. N. Johnson, and L. W. Davison (North-Holland, Amsterdam, 1990), p. 377.

  9. W. H. Gust, A. C. Holt, and E. B. Royce, J. Appl. Phys. 44, 550 (1973). https://doi.org/ doi 10.1063/1.1662224

    Article  ADS  Google Scholar 

  10. T. J. Vogler, W. D. Reinhart, and L. C. Chhabil- das,    J.    Appl. Phys. 99, 023512 (2006). https://doi.org/10.1063/1.2159084

    Article  ADS  Google Scholar 

  11. A. M. Rajendran and D. J. Grove, Int. J. Impact Eng. 18, 611 (1996). https://doi.org/10.1016/0734-743X(96)89122-6

    Article  Google Scholar 

  12. R. Feng, G. F. Raiser, and Y. M. Gupta, J. Appl. Phys. 79, 1378 (1996). https://doi.org/10.1063/1.361036

    Article  ADS  Google Scholar 

  13. T. J. Holmquist and G. R. Johnson, J. Appl. Phys. 97, 093502 (2005). https://doi.org/10.1063/1.1881798

    Article  ADS  Google Scholar 

  14. F. Th’evenot, J. Eur. Ceram. Soc. 6, 205 (1990). https://doi.org/10.1016/0955-2219(90)90048-K

    Article  Google Scholar 

  15. V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, J. Am. Ceram. Soc. 94, 3605 (2011). doi 10.1111/j.1551-2916.2011.04865.x

    Article  Google Scholar 

  16. A. K. Suri, C. Subramanian, J. K. Sonber, and T. S. R. Ch. Murthy, Int. Mater. Rev. 55, 4 (2010). https:// doi.org/10.1179/095066009X12506721665211

    Article  Google Scholar 

  17. H. Skarpeid, Master Thesis (Norwegian Univ. of Science and Technology, Trondheim, 2017).

  18. G. G. Gnesin and V. I. Rumyantsev, Proc. Scientific Seminar “Topical Issues in Manufacturing of Modern Ceramic Materials,” St. Petersburg, Russia, 2015 (Politekh. Univ., St. Petersburg, 2015), p. 17.

  19. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972). https://doi.org/10.1063/1.1660986

    Article  ADS  Google Scholar 

  20. G. V. Garkushin, S. V. Razorenov, V. I. Rumyantsev, and A. S. Savinykh, Mech. Solids 49, 616 (2014). doi 10.3103/S0025654414060028

    Article  ADS  Google Scholar 

  21. A. S. Savinykh, G. V. Garkushin, S. V. Razorenov, and V. I. Rumyantsev, Tech. Phys. 60, 863 (2015). doi 10.1134/S1063784215060249

    Article  Google Scholar 

  22. W. D. Winkler and A. J. Stilp, Proc. American Physical Society Topical Conf. on Shock Compression of Condensed Matter, Williamsburg, Virginia, 1991, Ed. by S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker (North-Holland, Amsterdam, 1992), p. 475. https:// doi.org/10.1016/B978-0-444-89732-9.50108-4

  23. A. S. Savinykh, G. I. Kanel, S. V. Razorenov, and A. Rajendran, AIP Conf. Proc. 845, 888 (2006). https://doi.org/10.1063/1.2263464

    Article  ADS  Google Scholar 

  24. N. S. Brar, Z. Rosenberg, and S. J. Bless, Proc. American Physical Society Topical Conf. on Shock Compression of Condensed Matter, Williamsburg, Virginia, 1991, Ed. by S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker (North-Holland, Amsterdam, 1992), p. 467. https://doi.org/10.1016/B978-0-444-89732-9.50106-0

  25. W. H. Gust and E. B. Royce, J. Appl. Phys. 42, 276 (1971). https://doi.org/10.1063/1.1659584

    Article  ADS  Google Scholar 

  26. D. E. Grady, AIP Conf. Proc. 309, 741 (2008). https: //doi.org/10.1063/1.46206

    Article  ADS  Google Scholar 

  27. S. Hayun, N. Frage, M. P. Dariel, and E. Zaretsky, AIP Conf. Proc. 955, 747 (2007). https://doi.org/ 10.1063/1.2833227

    ADS  Google Scholar 

  28. Y. Zhang, T. Mashimo, Y. Uemura, M. Uchino, M. Kodama, K. Shibata, K. Fukuoka, M. Kikuchi, T. Kobayashi, and T. Sekine, J. Appl. Phys. 100, 113536 (2006). https://doi.org/10.1063/1.2399334

    Article  ADS  Google Scholar 

  29. T. J. Vogler, W. D. Reinhart, and L. C. Chhabildas, J. Appl. Phys. 95, 4173 (2004). https://doi.org/ 10.1063/1.1686902

    Article  ADS  Google Scholar 

  30. G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Savinykh.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savinykh, A.S., Cherepanov, I.A., Razorenov, S.V. et al. Evolution of Shock Waves in Hot-Pressed Ceramics of Boron Carbide and Silicon Carbide. Tech. Phys. 63, 1755–1761 (2018). https://doi.org/10.1134/S1063784218120186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218120186

Navigation