Skip to main content
Log in

Perturbation Theory in the Analysis of Quantum Vortices Formed by Impact of Ultrashort Electromagnetic Pulse on Atom

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Nonstationary perturbation theory is used to study generation of quantum vortices resulting from ionization of hydrogen-like atom by an ultrashort pulse of classical electromagnetic field. It is shown that the vortices are determined by quantum interference effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. W. J. Kwon, J. H. Kim, S. W. Seo, and Y. Shin, Phys. Rev. Lett. 117, 245301 (2016).

    Article  ADS  Google Scholar 

  2. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. Lett. 104, 150404 (2010).

    Article  ADS  Google Scholar 

  3. G. W. Stagg, A. J. Allen, C. F. Barenghi, and N. G. Parker, J. Phys. Conf. Ser. 594, 012044 (2015).

    Article  Google Scholar 

  4. L. G. Loitsyanskii, Fluid Mechanics: College Textbook, 7th ed. (Drofa, Moscow, 2003).

    Google Scholar 

  5. M. I. Rabinovich, Sov. Phys. Usp. 21, 443 (1978).

    Article  ADS  Google Scholar 

  6. J. M. Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A. V. Meremianin, and A. F. Starace, Phys. Rev. Lett. 115, 113004 (2015).

    Article  ADS  Google Scholar 

  7. L. Ph. H. Schmidt, C. Goihl, D. Metz, H. Schmidt-Böcking, R. Dörner, S. Yu. Ovchinnikov, J. H. Macek, and D. R. Schultz, Phys. Rev. Lett. 112, 083201 (2014).

    Article  ADS  Google Scholar 

  8. N. V. Larionov and M. I. Kolobov, Phys. Rev. A 88, 013843 (2013);

    Article  ADS  Google Scholar 

  9. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, 1997).

    Book  Google Scholar 

  10. I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, Phys.-Usp. 44, 597 (2001);

    Article  Google Scholar 

  11. The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Ed. by D. Bouwmeester, A. K. Ekert, and A. Zeilinger (Springer, 2000).

    MATH  Google Scholar 

  12. A. A. Ishchenko, S. A. Aseev, V. N. Bagratashvili, V. Ya. Panchenko, and E. A. Ryabov, Phys.-Usp. 57, 633 (2014). doi 10.3367/UFNe.0184.201407a.0681

    Article  Google Scholar 

  13. S. Yu. Ovchinnikov, N. V. Larionov, A. A. Smirnovskii, and A. A. Shmidt, Nauchno-Tekh. Vedomosti SPbGPU. Fiz.-Mat. Nauki 10 (4), 111 (2017).

    Google Scholar 

  14. J. M. Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, and A. F. Starace, Phys. Rev. A 94, 013408 (2016).

    Article  ADS  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 6th ed. (Fizmatlit, Moscow, 2004).

    MATH  Google Scholar 

  16. N. B. Delone and V. P. Krainov, Nonlinear Ionization of Atoms by Laser Radiation (Fizmatlit, Moscow, 2001).

    Google Scholar 

  17. D. G. W. Parfitt and M. E. Portnoi, J. Math. Phys. 43, 4681 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  18. X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y. Ching, Phys. Rev. A 43, 1186 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  19. E. Madelung, Die mathematischen Hilfsmittel des Physikers (Springer, Berlin, 1957).

    Book  MATH  Google Scholar 

  20. N. N. Rosanov, Opt. Spectrosc. 124, 72 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Schmidt.

Additional information

Translated by A. Chikishev

APPENDIX

APPENDIX

Cylindrical waves represented in terms of momenta. We use the known expressions for the Bessel function [17]:

$$\begin{gathered} {{J}_{m}}(x) = \frac{{{{{(i)}}^{m}}}}{{2\pi }}\int\limits_0^{2\pi } {\exp ( - ix\cos (\varphi ) + im\varphi )d\varphi ,} \\ {{J}_{m}}(x) = \frac{1}{{2\pi }}\int\limits_0^{2\pi } {\exp ( - ix\sin (\varphi ) + im\varphi )d\varphi ,} \\ \end{gathered} $$
((A.1))

properties

$$\begin{gathered} {{J}_{{ - m}}}(x) = {{( - 1)}^{m}}{{J}_{m}}(x), \\ {{J}_{m}}( - x) = {{( - 1)}^{m}}{{J}_{m}}(x), \\ \end{gathered} $$
((A.2))

and condition (13) to derive the following momentum representation of cylindrical waves:

$$\tilde {\Psi }_{{km}}^{{(0)}}({{k}_{x}}) = {{(i)}^{{ - m}}}{{C}_{m}}\frac{{\delta (k - {{k}_{x}})}}{k},$$
((A.3))
$$\tilde {\Psi }_{{km}}^{{(0)}}({{k}_{y}}) = {{C}_{m}}\frac{{\delta (k - {{k}_{y}})}}{k}.$$
((A.4))

For negative projections, quantity kx,y is chan-ged by quantity |kx,y|. The coefficients are Cm = 1 at kx,y > 0 and m ≥ 0 or kx,y < 0 and m ≤ 0 and Cm = (–1)m at kx, y > 0 and m < 0 or kx,y < 0 and m > 0.

Radial component of the matrix element of perturbation operator 〈α, |m'||ρ|β, |m|〉 (10) calculated in the free-electron approximation. For the transition of hydrogen atom from the ground state to the state of continuous spectrum, we have

$$\langle k,1{\text{|}}\rho {\text{|}}1,0\rangle = \frac{{6k}}{{{{{(1 + {{k}^{2}})}}^{{5/2}}}}}.$$
((A.5))

When transitions to the final state of continuous spectrum via intermediate states of the same continuous spectrum are considered, we must calculate the following matrix elements 〈k, |m||ρ|k', |m\( \mp \) 1|〉. Such calculations can be performed using the known expressions that are satisfied for cylindrical functions [17]

$$\begin{gathered} {{J}_{{\alpha - 1}}}(x) = \left( {\frac{\alpha }{x} + \frac{d}{{dx}}} \right){{J}_{\alpha }}(x), \\ {{J}_{{\alpha + 1}}}(x) = \left( {\frac{\alpha }{x} - \frac{d}{{dx}}} \right){{J}_{\alpha }}(x) \\ \end{gathered} $$
((A.6))

and condition (13). Then, we obtain

$$\langle k,{\text{|}}m{\text{||}}\rho {\text{|}}k',{\text{|}}m - 1{\text{|}}\rangle \, = \,\left\{ \begin{gathered} \left( {\frac{m}{{k'}} + \frac{\partial }{{\partial k'}}} \right)\frac{{\delta (k - k')}}{k},\quad m > 0, \hfill \\ \left( {\frac{{{\text{|}}m{\text{|}}}}{{k'}} - \frac{\partial }{{\partial k'}}} \right)\frac{{\delta (k - k')}}{k},\quad m \leqslant 0 \hfill \\ \end{gathered} \right.$$
((A.7))

and

$$\langle k,{\text{|}}m{\text{||}}\rho {\text{|}}k',{\text{|}}m + 1{\text{|}}\rangle \, = \,\left\{ \begin{gathered} \left( {\frac{m}{{k'}} - \frac{\partial }{{\partial k'}}} \right)\frac{{\delta (k - k')}}{k},\quad m \geqslant 0, \hfill \\ \left( {\frac{{{\text{|}}m{\text{|}}}}{{k'}} + \frac{\partial }{{\partial k'}}} \right)\frac{{\delta (k - k')}}{k},\quad m < 0. \hfill \\ \end{gathered} \right.$$
((A.8))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionov, N.V., Ovchinnikov, S.Y., Smirnovsky, A.A. et al. Perturbation Theory in the Analysis of Quantum Vortices Formed by Impact of Ultrashort Electromagnetic Pulse on Atom. Tech. Phys. 63, 1569–1575 (2018). https://doi.org/10.1134/S1063784218110166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218110166

Keywords

Navigation