Skip to main content
Log in

Detection of UV Radiation from Extensive Air Showers: Prospects for Cherenkov Gamma-Ray Astronomy

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Cherenkov emission of extensive air showers (EAS) from cosmic gamma rays and cosmic-ray protons has been modelled. Spectral density of such emission in the 240–700 nm band has been determined for 3 GeV–10 TeV primaries of both sorts. It has been shown that the ratio of EAS Cherenkov emission fluxes in the optical and ultraviolet (UV) bands substantially depends on the sort of the primary, so the ratio can be employed to select gamma-ray events from the background produced by cosmic rays. Detection of EAS Cherenkov emission with specialized silicon photomultipliers sensitive in the UV band would allow one to substantially extend the duty cycle of a Cherenkov gamma-ray telescope, as it would be possible to observe the showers during moonlit nights. The UV-sensitive silicon photomultipliers developed at the Ioffe Institute would allow to detect gamma-ray-induced EAS at the Cherenkov gamma-ray observatory ALEGRO over a threshold of about 40 GeV at 5 km above sea level and about 80 GeV at 2 km above sea level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Henceforth, the term “EAS electrons” refers to secondary electrons and positrons of EASs. The deficiency of positrons due to annihilation (see, for example, [20, 21]) is disregarded in this study.

  2. Since most of this range corresponds to the standard V range (but also embraces the UVA range), in which the SiPMs widely used at present (e.g., Hamamatsu S10362-33 [29]) possess a noticeable sensitivity.

  3. With an error near 6% for primary particles with energy less than 1 TeV at a 5-km-observation altitude and with an error less than 4% for primary particles with energy lower than 3 TeV at an observation altitude of 2 km.

  4. This range embraces most of the MUV range.

  5. It should be noted that the inclusion of EAS Cherenkov radiation with a wavelength up to 700 nm is important because modern optical photodetectors that are planned to be used at new-generation Cherenkov gamma telescopes exhibit a high sensitivity at such wavelengths.

  6. This formula was apparently used inaccurately: the exponent in the energy dependence of the probability density is wrong.

REFERENCES

  1. D. Gottschall, A. Förster, A. Bonardi, A. Santangelo, and G. Puehlhofer, Proc. 34th Int. Cosmic Ray Conf., Hague, The Netherlands, 2015, p. 1017.

  2. H. Anderhub, M. Backes, and A. Biland, J. Instrum. 8, 06008 (2013).

    Article  Google Scholar 

  3. A. A. Stepanian, V. P. Fomin, and B. M. Vladimirskii, Izv. Krym. Astrofiz. Obs. 66, 234 (1983).

    ADS  Google Scholar 

  4. Y. L. Zyskin, B. M. Vladimirsky, Y. I. Neshpor, A. A. Stepanian, V. P. Fomin, and V. G. Shitov, Proc. 20th Int. Cosmic Ray Conf., Moscow, USSR, 1987, Vol. 2, p. 342.

  5. M. Chantell, C. W. Akerlof, J. Buckley, D. A. Carter-Lewis, M. F. Cawley, V. Connaughton, D. J. Fegan, P. Fleury, J. Gaidos, A. M. Hillas, R. C. Lamb, E. Pare, H. J. Rose, A. C. Rovero, X. Sarazin, et al., Proc. 24th Int. Cosmic Ray Conf., Rome, Italy, 1995, Vol. 2, p. 544.

  6. M. C. Chantell, X. Sarazin, P. Fleury, K. Harris, A. Kerrick, E. Pare, M. Punch, M. Urban, G. Vacanti, and T. C. Weekes, Proc. 24th Int. Cosmic Ray Conf., Rome, Italy, 1995, Vol. 2, p. 560.

  7. X. Sarazin, M. C. Chantell, P. Fleury, E. Pare, M. Punch, M. Urban, G. Vacanti, and T. C. Weekes, Astropart. Phys. 4, 227 (1996).

    Article  ADS  Google Scholar 

  8. M. A. Rahman, P. N. Bhat, B. S. Acharya, V. R. Chitnis, P. Majumdar, and P. R. Vishwanath, Exp. Astron. 11, 113 (2001).

    Article  ADS  Google Scholar 

  9. M. A. Rahman, P. N. Bhat, B. S. Acharya, V. R. Chitnis, P. Majumdar, and P. R. Vishwanath, Bull. Astron. Soc. India 30, 335 (2002).

    ADS  Google Scholar 

  10. S. Griffin (VERITAS Collab.), Proc. 34th Int. Cosmic Ray Conf., Hague, The Netherlands, 2015, p. 989.

  11. D. Guberman, J. Cortina, R. Garcia, J. Herrera, M. Manganaro, A. Moralejo, J. Rico, and M. Will (MAGIC Collab.), Proc. 34th Int. Cosmic Ray Conf., Hague, The Netherlands, 2015, p. 1237.

  12. M. L. Ahnen, S. Ansoldi, L. A. Antonelli, C. Arcaro, A. Babić, et al., Astropart. Phys. 94, 29 (2017).

    Article  ADS  Google Scholar 

  13. B. S. Acharya, I. Agudo, I. Al Samarai, et al., arXiv:1709.07997 [astro-ph.IM].

  14. F. A. Aharonian, A. K. Konopelko, H. J. Völk, and H. Quintana, Astropart. Phys. 15, 335 (2001).

    Article  ADS  Google Scholar 

  15. E. E. Kholupenko, P. N. Aruev, D. A. Baiko, A. A. Bogdanov, G. I. Vasilyev, V. V. Zabrodskii, A. M. Krasilchtchikov, Y. V. Tuboltsev, and Y. V. Chichagov, Phys. At. Nucl. 79, 1542 (2016).

    Article  Google Scholar 

  16. A. M. Bykov, F. A. Aharonian, A. M. Krassilchtchikov, E. E. Kholupenko, P. N. Aruev, D. A. Baiko, A. A. Bogdanov, G. I. Vasilyev, V. V. Zabrodskii, S. V. Troitsky, Yu. V. Tuboltsev, A. A. Kozhberov, K. P. Levenfish, and Yu. V. Chichagov, Tech. Phys. 62, 819 (2017).

    Article  Google Scholar 

  17. V. V. Zabrodskii, P. N. Aruev, V. P. Belik, B. Y. Ber, S. V. Bobashev, M. V. Petrenko, N. A. Sobolev, V. V. Filimonov, and M. Z. Shvarts, Tech. Phys. Lett. 40, 330 (2014).

    Article  ADS  Google Scholar 

  18. K. Greisen, in Progress in Cosmic Ray Physics, Ed. by J. G. Wilson (North-Holland, Amsterdam, 1956), Vol. 3, Chap. 1.

    Google Scholar 

  19. J. Linsley, Proc. 27th Int. Cosmic Ray Conf., Hamburg, Germany, 2001, Vol. 2, p. 502.

  20. G. A. Askaryan, Sov. Phys. JETP 14, 441 (1962).

    Google Scholar 

  21. A. D. Filonenko and Y. N. Chekh, Radiofiz. Radioastron. 7, 160 (2002).

    Google Scholar 

  22. M. Giller, G. Wieczorek, A. Kacperczyk, H. Stojek, and W. Tkaczyk, J. Phys. G 30, 97 (2004).

    Article  ADS  Google Scholar 

  23. N. P. Ilina, N. N. Kalmykov, and V. V. Prosin, Sov. J. Nucl. Phys. 55, 1540 (1992).

    Google Scholar 

  24. C. Berat, S. Bottai, D. De Marco, S. Moreggia, D. Naumov, M. Pallavicini, R. Pesce, A. Petrolini, A. Stutz, E. Taddei, and A. Thea, Astropart. Phys. 33, 221 (2010).

    Article  ADS  Google Scholar 

  25. S. Ogawa, Proc. 1st Int. Workshop On Air Fluorescence, Salt Lake City, United States, 2002. http://www.physics.utah.edu/~fiwaf/talks/ogawa.pdf.

  26. D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, CORSIKA: a Monte Carlo Code to Simulate Extensive Air Showers (Forschungszentrum Karlsruhe GmbH, Karlsruhe, 1998).

    Google Scholar 

  27. The 1976 Standard Atmosphere Above 86-km Altitude, Ed. by R. A. Minzner (NASA, Washington, 1976).

    Google Scholar 

  28. A. Bucholtz, Appl. Opt. 34, 2765 (1995).

    Article  ADS  Google Scholar 

  29. https://halldweb.jlab.org/wiki/images/4/49/S10362-33_series_kapd1023e05.pdf.

  30. J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, J. Quant. Spectrosc. Radiat. Transfer 61, 509 (1999).

    Article  ADS  Google Scholar 

  31. J. Orphal, J. Photochem. Photobiol., A 157, 185 (2003).

    Article  Google Scholar 

  32. https://tropo.gsfc.nasa.gov/shadoz/.

  33. O. R. Kalekin, Y. I. Neshpor, A. A. Stepanyan, Y. L. Zyskin, A. P. Kornienko, B. M. Vladimirskii, V. P. Fomin, and V. G. Shitov, Astron. Lett. 21, 163 (1995).

    ADS  Google Scholar 

  34. Y. I. Neshpor, N. N. Chalenko, A. A. Stepanian, O.  R.  Kalekin, N. A. Jogolev, V. P. Fomin, and V. G. Shitov, Astron. Rep. 45, 249 (2001).

    Article  ADS  Google Scholar 

  35. V. I. Zatsepin and A. E. Chudakov, Zh. Eksp. Teor. Fiz. 42, 1622 (1962).

    Google Scholar 

  36. T. K. Gaisser and A. M. Hillas, Proc. 15th Int. Cosmic Ray Conf., Plovdiv, Bulgaria, 1977, Vol. 8, p. 353.

  37. A. Egan, B. T. Fleming, J. Wiley, M. Quijada, J. Del Hoyo, J. Hennessy, B. Hicks, K. France, N. Kruczek, and N. Erickson, Proc. SPIE 10397, 1039715 (2017).

    Google Scholar 

  38. M. Urban, M. C. Chantell, P. Fleury, K. Harris, A. D. Kerrick, E. Pare, M. Punch, X. Sarazin, G. Vacanti, and T. C. Weekes, Nucl. Instrum. Methods Phys. Res., Sect. A 368, 503 (1996).

    Google Scholar 

  39. C. Leinert, S. Bowyer, L. K. Haikala, M. S. Hanner, M. G. Hauser, A. C. Levasseur-Regourd, I. Mann, K. Mattila, W. T. Reach, W. Schlosser, H. J. Staude, G. N. Toller, J. L. Weiland, J. L. Weinberg, and A. N. Witt, Astron. Astrophys. Suppl. 127, 1 (1998).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

E. E. Kh., P.N.A., and A.M.K. are grateful to the Russian Foundation for Basic Research for support (project no. 16-29-13009-ofi-m).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Kholupenko.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholupenko, E.E., Bykov, A.M., Aharonyan, F.A. et al. Detection of UV Radiation from Extensive Air Showers: Prospects for Cherenkov Gamma-Ray Astronomy. Tech. Phys. 63, 1603–1614 (2018). https://doi.org/10.1134/S1063784218110154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218110154

Keywords

Navigation