Skip to main content
Log in

Immobilization of Photoditazine on Vaterite Porous Particles and Analysis of the System Stability in Model Media

  • DEVELOPMENT OF PROCESS TECHNOLOGIES, DIAGNOSTIC METHODS, AND FUNCTIONAL MATERIALS AND STRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In this paper, we present the results on immobilization of Photoditazine, the photosensitizer of the second generation, on vaterite (metastable modification of calcium carbonate) porous particles of two different sizes. The adsorption efficiency is found to be 3.0 and 3.2 wt % Photoditazine on vaterite particles with average diameters of 5 and 0.5 μm, respectively. The curves of Photoditazine desorption from vaterite particles are determined depending on the composition of the dispersion medium (water and bovine serum albumin solution). It is found that vaterite particles in water are subjected to recrystallization in accordance with the dissolution–precipitation mechanism. The presence of albumin molecules at a physiological concentration allows stabilizing metastable vaterite particles of micron and submicron size for at least 17 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. V. Yaroslavtseva-Isaeva and M. A. Kaplan, Ross. Bioterapevticheskii Zh. 4, 36 (2008).

    Google Scholar 

  2. M. Shirmanova et al., J. Biomed. Opt. 15, 048004 (2010).

    Article  ADS  Google Scholar 

  3. V. Lauth, M. Maas, and K. Rezwan, Mater. Sci. Eng. C 78, 305 (2017).

    Article  Google Scholar 

  4. G. B. Sukhorukov et al., J. Mater. Chem. 14, 2073 (2004).

    Article  Google Scholar 

  5. R. Raliya et al., RSC Adv. 6, 54331 (2016).

    Article  Google Scholar 

  6. Y. Ueno et al., J. Controlled Release 103, 93 (2005).

    Article  Google Scholar 

  7. H. Peng et al., Nanoscale Res. Lett. 8, 321 (2013).

    Article  ADS  Google Scholar 

  8. J. R. Lakkakula et al., RSC Adv. 6, 104537 (2016).

    Article  Google Scholar 

  9. W. Wei et al., J. Am. Chem. Soc. 130, 15808 (2008).

    Article  Google Scholar 

  10. M. Ma and R.-C. Su, in Advances in Biomimetics, Ed. by A. George (InTech, 2011), pp. 13–50.

  11. Y.-H. Won et al., J. Mater. Chem. 20, 7728 (2010).

    Article  Google Scholar 

  12. S. Donatan et al., ACS Appl. Mater. Interfaces 8, 14284 (2016).

    Article  Google Scholar 

  13. T. N. Borodina et al., Bionanoscience 6, 261 (2016).

    Article  Google Scholar 

  14. M. Fujiwara et al., Adv. Powder Technol. 25, 1147 (2014).

    Article  Google Scholar 

  15. J. Saikia and G. Das, J. Environ. Chem. Eng. 2, 1165 (2014).

    Article  Google Scholar 

  16. G. B. Sukhorukov et al., J. Mater. Chem. 14, 2073 (2004).

    Article  Google Scholar 

  17. D. B. Trushina, T. V. Bukreeva, and M. N. Antipina, Cryst. Growth Des. 16, 1311 (2016).

    Article  Google Scholar 

  18. D. B. Trushina, S. N. Sulyanov, T. V. Bukreeva, and M. V. Kovalchuk, Crystallogr. Rep. 60, 570 (2015).

    Article  ADS  Google Scholar 

  19. Y. Svenskaya et al., Biophys. Chem. 182, 11 (2013).

    Article  Google Scholar 

  20. Y. Yan et al., ACS Nano 7, 10960 (2013).

    Article  Google Scholar 

  21. R. J. Davey et al., J. Cryst. Growth 79, 648 (1986).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on the equipment of the Shared Research Center of Federal Scientific Center “Crystallography and Photonics,” Russian Academy of Sciences, and was supported by the Ministry of Education and Science of the Russian Federation. The study was performed using the equipment of the National Research Center “Kurchatov Institute.” The work was supported by the Federal Agency of Scientific Organizations (agreement no. 007-ГЗ/Ч3363/26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Trushina.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trushina, D.B., Borodina, T.N., Artemov, V.V. et al. Immobilization of Photoditazine on Vaterite Porous Particles and Analysis of the System Stability in Model Media. Tech. Phys. 63, 1345–1351 (2018). https://doi.org/10.1134/S1063784218090220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090220

Keywords

Navigation