Skip to main content
Log in

InAsSb Diode Optical Pairs for Real-Time Carbon Dioxide Sensors

  • INSTRUMENT DEVELOPMENT AND DEVICES FOR PRACTICAL APPLICATIONS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Efficiencies of optical pairs consisting of fast low-noise uncooled immersion LEDs and photodiodes based on InAsSb solid solution are studied. The proposed optical pairs are promising for applications in compact low-voltage sensors of carbon dioxide. The threshold sensitivity of such a sensor is several hundreds of ppm, and the measurement error is no worse than 5% in a wide range of concentrations (up to 10 v/v%) at a relatively high time resolution (50 ms) and a sample volume of no greater than 50 mL. Relatively high working rate and low volume of the sample improve diagnostics in capnography and allow applications in pediatrics and side-stream capnography including measurements of instantaneous CO2 concentration in the course of breathing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. P. Hodgkinson and R. P. Tatam, Meas. Sci. Technol. 24, 012004 (2013).

    Article  ADS  Google Scholar 

  2. D. Zymelka, B. Matveev, S. Aleksandrov, G. Sotnikova, G. Gavrilov, and M. Saadaoui, Flexible Printed Electron. 2, 045006 (2017). doi 10.1088/2058-8585/aa900a

    Article  Google Scholar 

  3. V. N. Bingi, E. V. Stepanov, A. G. Chuchalin, V. A. Milyaev, K. L. Moskalenko, Yu. A. Shulagin, and L. R. Yanguzarova, in Laser-Based Spectroscopy Analysis of Molecule Biomarkers for Biomedical Diagnostics, Ed. by E. V. Stepanov (Nauka, Moscow, 2005), p. 189.

    Google Scholar 

  4. S. F. Johnston, Meas. Sci. Technol. 3, 191 (1992).

    Article  ADS  Google Scholar 

  5. B. A. Matveev, Fotonika, No. 6, 80 (2014).

  6. T. Kuusela, J. Peura, B. A. Matveev, M. A. Remennyy, and N. M. Stus’, Vib. Spectrosc. 51, 289 (2009).

    Article  Google Scholar 

  7. M. A. Remenniy, B. A. Matveev, N. V. Zotova, S. A. Karandashev, N. M. Stus’, and N. D. Ilinskaya, Proc. SPIE 6585, 658504 (2007). doi 10.1117/12.722847

    Article  Google Scholar 

  8. G. A. Gavrilov, B. A. Matveev, and G. Yu. Sotnikova, Tech. Phys. Lett. 37, 866 (2011).

    Article  ADS  Google Scholar 

  9. K. J. Avdonkin and V. K. Makukha, Proc. 6th Annual International Siberian Workshop on Electron Devices and Materials, Erlagol, Altai, Russia, 2005, p. 153.

  10. J. Yoo, V. Prikhodko, J. E. Parks, A. Perfetto, S. Geckler, and W. P. Partridge, Appl. Spectrosc. 69, 1047 (2015). doi 10.1366/14-07796

    Article  ADS  Google Scholar 

  11. G. Y. Sotnikova, G. A. Gavrilov, S. E. Aleksandrov, A. A. Kapralov, S. A. Karandashev, B. A. Matveev, and M. A. Remennyy, IEEE Sens. J. 10, 225 (2010). doi 10.1109/JSEN.2009.2033259

    Article  ADS  Google Scholar 

  12. T. V. Bezyazychnaya, M. V. Bogdanovich, V. V. Kabanov, D. M. Kabanau, Y. V. Lebiadok, V. V. Parashchuk, A. G. Ryabtsev, G. I. Ryabtsev, P. V. Shpak, M. A. Shchemelev, I. A. Andreev, E. V. Kunitsyna, V. V. Sherstnev, and Yu. P. Yakovlev, Semiconductors 49, 980 (2015).

    Article  ADS  Google Scholar 

  13. Capnography, Ed. by J. S. Gravenstein, M. B. Jaffe, N. Gravenstein, and D. A. Paulus (Cambridge Univ. Press, 2011).

    Google Scholar 

  14. A. M. Turichin, P. V. Novitskii, E. S. Levshina, et al., Electric Measurements of Nonelectric Quantities (Energiya, Leningrad, 1975).

    Google Scholar 

  15. N. D. Il’inskaya, S. A. Karandashev, N. G. Karpukhina, A. A. Lavrov, B. A. Matveev, M. A. Remennyi, N. M. Stus, and A. A. Usikova, Semiconductors 50, 646 (2016).

    Article  ADS  Google Scholar 

  16. N. V. Zotova, N. D. Il’inskaya, S. A. Karandashev, B. A. Matveev, M. A. Remennyi, and N. M. Stus’, Semiconductors 40, 697 (2006).

    Article  ADS  Google Scholar 

  17. A. L. Zakgeim, N. D. Il’inskaya, S. A. Karandashev, A. A. Lavrov, B. A. Matveev, M. A. Remennyy, N. M. Stus’, A. A. Usikova, and A. E. Cherniakov, Semiconductors 51, 260 (2017). doi 10.1134/S1063782617020269

    Article  ADS  Google Scholar 

  18. S. A. Karandashev, B. A. Matveev, M. A. Remennyi, A. A. Shlenskii, L. S. Lunin, V. I. Ratushnyi, A. V. Koryuk, and N. G. Tarakanova, Semiconductors 41, 1369 (2007).

    Article  ADS  Google Scholar 

  19. N. V. Zotova, S. A. Karandeshev, B. A. Matveev, M. A. Remennyi, and N. M. Stus’, J. Opt. Technol. 79, 571 (2012).

    Article  Google Scholar 

  20. G. A. Gavrilov, G. Yu. Sotnikova, S. E. Aleksandrov, S. A. Usachev, and A. A. Kapralov, RF Useful Model No. 75885 (2008).

  21. S. E. Aleksandrov, G. A. Gavrilov, and G. Yu. Sotnikova, Tech. Phys. Lett. 40, 704 (2014).

    Article  ADS  Google Scholar 

  22. S. E. Aleksandrov, G. A. Gavrilov, A. A. Kapralov, and G. Yu. Sotnikova, Tech. Phys. Lett. 42, 263 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Matveev.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, S.E., Gavrilov, G.A., Kapralov, A.A. et al. InAsSb Diode Optical Pairs for Real-Time Carbon Dioxide Sensors. Tech. Phys. 63, 1390–1395 (2018). https://doi.org/10.1134/S1063784218090025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090025

Keywords

Navigation