Skip to main content

Porous Silicon Gas Sensing

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

In this chapter, the state of the art on porous silicon gas sensors , both electrical and optical, is reviewed by paying special emphasis on the advancement of gas sensor architectures that has occurred over the two last decades, as well as on the different functionalization approaches implemented in and chemical species sensed with such architectures. Ten main architectures, five for the electrical domain (capacitor, Schottky-like diode, resistor, FET-like transistor, and junction-like diode) and five for the optical domain (single layer, waveguide, Bragg mirror, resonant cavity, and rugate filter), have been proposed so far for improving gas sensor features. Several functionalization schemes have been integrated in such architectures to improve sensor performance, and more than 50 different chemical species have been sensed using porous silicon gas sensors. The latest trends on multiparametric sensing on single devices as well as on multisensor integration in a single chip, for both optical and electrical domains, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allcock P, Snow PA (2001) Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors. J Appl Phys 90(10):5052–5057

    Google Scholar 

  • Amato G, Boarino L, Bellotti F (2004) On the apparently anomalous response of porous silicon to nitrogen dioxide. Appl Phys Lett 85:4409–4411

    Google Scholar 

  • Andersson RC, Muller RS, Tobias CW (1990) Investigations of porous silicon for vapor sensing. Sens Actuator A21-A23:835–839

    Google Scholar 

  • Angelucci R, Poggi A, Dori L, Cardinali GC, Parisini A, Tagliani A, Mariasaldi M, Cavani F (1999) Permeated porous silicon for hydrocarbon sensor fabrication. Sens Actuator 74:95–99

    Google Scholar 

  • Angelucci R, Poggi A, Dori L, Tagliani A, Cardinali GC, Corticelli F, Marisaldi M (2000) Permeated porous silicon suspended membrane as sub-ppm benzene sensor for air quality monitoring. J Porous Mater 7(1–3):197–200

    Google Scholar 

  • Archera M, Christophersen M, Fauchet PM (2005) Electrical porous silicon chemical sensor for detection of organic solvents. Sens Actuator B 106:347–357

    Google Scholar 

  • Arrand HF, Benson TM, Loni A, Arens-Fischer R, Krueger MG, Thoenissen M, Lueth H, Kershaw S, Vorozov NN (1999) Solvent detection using porous silicon optical waveguides. J Lumin 80:119–123

    Google Scholar 

  • Baratto C, Comini E, Faglia G, Sberveglieri G, Di Francia G, De Filippo F, La Ferrara V, Quercia L, Lancellotti L (2000) Gas detection with a porous silicon based sensor. Sens Actuator B 65:257–259

    Google Scholar 

  • Baratto C, Faglia G, Comini E, Sberveglieri G, Taroni A, La Ferrara V, Quercia L, Di Francia G (2001) A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sens Actuator B 77:62–66

    Google Scholar 

  • Barillaro G, Strambini LM (2008) An integrated CMOS sensing chip for NO2 detection. Sens Actuators B 134:585–590

    Google Scholar 

  • Barillaro G, Nannini A, Pieri F (2003) APSFET: a new, porous silicon-based gas sensing device. Sens Actuator B 93:263–270

    Google Scholar 

  • Barillaro G, Nannini A, Pieri F, Strambini LM (2004) Temperature behavior of the APSFET – a porous silicon-based FET gas sensor. Sens Actuator B 100(1–2):185–189

    Google Scholar 

  • Barillaro G, Diligenti A, Marola G, Strambini LM (2005) A silicon crystalline resistor with an adsorbing porous layer as gas sensor. Sens Actuator B 105:278–282

    Google Scholar 

  • Barillaro G, Diligenti A, Nannini A, Strambini LM, Comini E, Sberveglieri G (2006) Low-concentration NO2 detection with an adsorption porous silicon FET. Sens J IEEE 6(1):19–23

    Google Scholar 

  • Barillaro G, Diligenti A, Strambini LM (2007a) p + −n diodes with a lateral porous layer as gas sensors. Phys Stat Solid (a) 204(5):1399–1403

    Google Scholar 

  • Barillaro G, Bruschi P, Pieri F, Strambini LM (2007b) CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip. Phys Stat Solid (a) 204(5):1423–1428

    Google Scholar 

  • Barillaro G, Diligenti A, Strambini LM, Comini E, Faglia G (2008) NO2 adsorption effects on p + −n silicon junctions surrounded by a porous layer. Sens Actuator B 134:922–927

    Google Scholar 

  • Barillaro G, Lazzerini GM, Strambini LM (2010a) Modeling of porous silicon junction field effect transistor gas sensors: insight into NO2 interaction. Appl Phys Lett 96:162105

    Google Scholar 

  • Barillaro G, Bruschi P, Lazzerini GM, Strambini LM (2010b) Validation of the compatibility between a porous silicon-based gas sensor technology and standard microelectronic process. Sens J IEEE 10(4):893–899

    Google Scholar 

  • Belhousse S, Cheraga H, Gabouze N, Outamzabet R (2004) Fabrication and characterisation of a new sensing device based on hydrocarbon groups (CHx) coated porous silicon. Sens Actuator B 100:250–255

    Google Scholar 

  • Ben-Chorin M, Kux A, Schechter I (1994) Adsorbate effects on photoluminescence and electrical conductivity of porous silicon. Appl Phys Lett 64(4):481–483

    Google Scholar 

  • Bilenko D, Belobrovaya O, Jarkova E, Coldobanova O, Mysenko I, Khasina E (1997) Sensors on low-dimensional silicon structures. Sens Actuator A 62(1–3):621–623

    Google Scholar 

  • Bjorklund RB, Zangooie S, Arwin H (1996) Color changes in thin porous silicon films caused by vapor exposure. Appl Phys Lett 69(20):3001–3003

    Google Scholar 

  • Björkqvist M, Salonen J, Paski J, Laine E (2004a) Characterization of thermally carbonized porous silicon humidity sensor. Sens Actuator A 112:244–247

    Google Scholar 

  • Björkqvist M, Salonen J, Laine E (2004b) Humidity behavior of thermally carbonized porous silicon. Appl Surf Sci 222:269–274

    Google Scholar 

  • Björkqvist M, Salonen J, Tuura J, Jalkanen T, Lehto V-P (2009) Detecting amine vapours with thermally carbonized porous silicon gas sensor. Phys Stat Solid C 6(7):1769–1772

    Google Scholar 

  • Boarino L, Baratto C, Geobaldo F, Amato G, Comini E, Rossi AM, Faglia G, Lérondel G, Sberveglieri G (2000) NO2 monitoring at room temperature by a porous silicon gas sensor. Mater Sci Eng B69–70:210–214

    Google Scholar 

  • Chakane S, Gokarna A, Bhoraskar SV (2003) Metallophthalocyanine coated porous silicon gas sensor selective to NO2. Sens Actuator B 92:1–5

    Google Scholar 

  • Chapron J, Alekseev SA, Lysenko V, Zaitsev VN, Barbier D (2007) Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red Rugate filters. Sens Actuators B 120:706–711

    Google Scholar 

  • Chvojka T, Vrkoslav V, Jelı́nek I, Jindřich J, Lorenc M, Dian J (2004) Mechanisms of photoluminescence sensor response of porous silicon for organic species in gas and liquid phases. Sens Actuators B 100:246–249

    Google Scholar 

  • Coffer JL, Lilley SC, Martin RA, Files-Sesler LA (1993) Surface reactivity of luminescent porous silicon. J Appl Phys 74:2094–2096

    Google Scholar 

  • Content S, Trogler WC, Sailor MJ (2000) Detection of nitrobenzene, DNT, and TNT vapors by quenching of porous silicon photoluminescence. Chem Eur J 6(12):2205–2213

    Google Scholar 

  • De Stefano L, Moretti L, Rendina I, Rossi AM (2003) Porous silicon microcavities for optical hydrocarbons detection. Sens Actuators A 104:179–182

    Google Scholar 

  • De Stefano L, Moretti L, Rendina I, Rossi AM (2004a) Time-resolved sensing of chemical species in porous silicon optical microcavity. Sens Actuators B 100:168–172

    Google Scholar 

  • De Stefano L, Rendina I, Moretti L, Tundo S, Rossi AM (2004b) Smart optical sensors for chemical substances based on porous silicon technology. Appl Opt 43(1):167–172

    Google Scholar 

  • Descrovi E, Frascella F, Sciacca B, Geobaldo F, Dominici L, Michelotti F (2007) Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications. Appl Phys Lett 91:241109

    Google Scholar 

  • Di Francia G, La Ferrara V, Quercia L, Faglia G (2000) Sensitivity of porous silicon photoluminescence to low concentrations of CH4 and CO. J Porous Mater 4(1–3):287–290

    Google Scholar 

  • Dian J, Chvojka T, Vrkoslav V, Jelínek I (2005) Photoluminescence quenching of porous silicon in gas and liquid phases – the role of dielectric quenching and capillary condensation effects. Phys Stat Solidi C 2(9):3481–3485

    Google Scholar 

  • Dian J, Vrkoslav V, Jelínek I (2010) Recognition enhancement of oxidized and methyl-10-undecenoate functionalized porous silicon in gas phase photoluminescence sensing. Sens Actuators B 147:406–410

    Google Scholar 

  • Foucaran A, Pascal-Delannoy F, Giani A, Sackda A, Combette P, Boyer A (1997) Porous silicon layers used for gas sensor applications. Thin Solid Films 297:317–320

    Google Scholar 

  • Foucaran A, Sorli B, Garcia M, Pascal-Delannoy F, Giani A, Boyer A (2000) Porous silicon layer coupled with thermoelectric cooler: a humidity sensor. Sens Actuator A 79:189–193

    Google Scholar 

  • Gabouze N, Belhousse S, Cheraga H (2005) CHx – Porous silicon structures for gas sensing applications. Phys Stat Solid C 2(9):3449–3452

    Google Scholar 

  • Gabouze N, Belhousse S, Cheraga H, Ghellai N, Ouadah Y, Belkacem Y, Keffous A (2006) CO2 and H2 detection with a CHx/porous silicon-based sensor. Vacuum 80:986–989

    Google Scholar 

  • Gaburro Z, Oton CJ, Pavesi L, Pancheri L (2004a) Opposite effects of NO2 on electrical injection in porous silicon gas sensors. Appl Phys Lett 84:4388–4390

    Google Scholar 

  • Gaburro Z, Bettotti P, Saiani M, Pavesi L, Pancheri L, Oton CJ, Capuj N (2004b) Role of microstructure in porous silicon gas sensors for NO2. Appl Phys Lett 85:555

    Google Scholar 

  • Galeazzo E, Peres HEM, Santos G, Peixoto N, Ramirez-Fernandez FJ (2003) Gas sensitive porous silicon devices: responses to organic vapors. Sens Actuator B 93:384–390

    Google Scholar 

  • Galstyan VE, Martirosyan KS, Aroutiounian VM, Arakelyan VM, Arakelyan AH, Soukiassian PG (2008) Investigations of hydrogen sensors made of porous silicon. Thin Solid Films 517:239–241

    Google Scholar 

  • Gao J, Gao T, Sailor MJ (2000) Porous-silicon vapor sensor based on laser interferometry. Appl Phys Lett 77:901–903

    Google Scholar 

  • Gao J, Gao T, Li YY, Sailor MJ (2002a) Vapor sensors based on optical interferometry from oxidized microporous silicon films. Langmuir 18(6):2229–2233

    Google Scholar 

  • Gao T, Gao J, Sailor MJ (2002b) Tuning the response and stability of thin film mesoporous silicon vapor sensors by surface modification. Langmuir 18(25):9953–9957

    Google Scholar 

  • Geobaldo F, Rivolo P, Salvador GP, Amato G, Boarino L, Garrone E (2004) Free carriers reactivation on p + −mesoporous silicon through ammonia adsorption: a FTIR study. Sens Actuators B 100:205–208

    Google Scholar 

  • Gole JL, Lewis S, Lee S (2007) Nanostructures and porous silicon: activity at interfaces in sensors and photocatalytic reactors. Phys Stat Sol (a) 204:1417–1422

    Google Scholar 

  • Harper J, Sailor MJ (1996) Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon. Anal Chem 68:3713–3717

    Google Scholar 

  • Holec T, Chvojka T, Jelı́nek I, Jindřich J, Němec I, Pelant I, Valenta J, Dian J (2002) Determination of sensoric parameters of porous silicon in sensing of organic vapors. Mater Sci Eng C 19:251–254

    Google Scholar 

  • Jalkanen T, Tuura J, Mäkilä E, Salonen J (2010) Electro-optical porous silicon gas sensor with enhanced selectivity. Sens Actuators B 147:100–104

    Google Scholar 

  • Jelínek V, Vrkoslav T, Trojan J, Jindřich JD (2007) Host-guest interactions in gas phase chemical sensing of permethyl-6I-alkenoylamino-6I-deoxy-β-cyclodextrin derivatized porous silicon. Phys Stat Solidi C 4(6):2083–2087

    Google Scholar 

  • Kanungo J, Saha H, Basu S (2010) Pd sensitized porous silicon hydrogen sensor-Influence of ZnO thin film. Sens Actuator B 147:128–136

    Google Scholar 

  • Kelly MT, Bocarsly AB (1998) Mechanisms of photoluminescent quenching of oxidized porous silicon. Applications to chemical sensing. Coord Chem Rev 171:251–259

    Google Scholar 

  • Kelly MT, Chun JKM, Bocarsly AB (1996) A silicon sensor for SO2. Nature 382:214–215

    Google Scholar 

  • Kelly TL, Gao T, Sailor MJ (2011a) Carbon and carbon/silicon composites templated in rugate filters for the adsorption and detection of organic vapors. Adv Mater 23:1776–1781

    Google Scholar 

  • Kelly TL, Garcia Sega A, Sailor MJ (2011b) Identification and quantification of organic vapors by time-resolved diffusion in stacked mesoporous photonic crystals. Nano Lett 11:3169–3173

    Google Scholar 

  • Kim H-J, Kim Y-Y, Lee K-W (2010) Multiparametric sensor based on DBR porous silicon for detection of ethanol gas. Curr Appl Phys 10:181–183

    Google Scholar 

  • Kim H-J, Kim Y-Y, Lee K-W (2011) Sensing characteristics of the organic vapors according to the reflectance spectrum in the porous silicon multilayer structure. Sens Actuators A 165:276–279

    Google Scholar 

  • King BH, Ruminski AM, Snyder JL, Sailor MJ (2007) Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon. Adv Mater 19:4530–4534

    Google Scholar 

  • Korotcenkov G (2013) Handbook of gas sensor materials. Springer, New York. ISBN 978-1-4614-7165-3

    Google Scholar 

  • Kovacs D, Meister UM (2009) Investigation of humidity adsorption in porous silicon layers. Phys Status Solid A 206(6):1343–1347

    Google Scholar 

  • Laminack WI, Gole JL (2013) Light enhanced electron transduction and amplified sensing at a nanostructure modified semiconductor interface. Adv Funct Mater 23(47):5916–5924

    Google Scholar 

  • Lauerhaas JM, Sailor MJ (1993) Chemical modification of the photoluminescence quenching of porous silicon. Science 261(5128):1567–1568

    Google Scholar 

  • Lauerhaas JM, Credo GM, Heinrich JL, Sailor MJ (1992) Reversible luminescence quenching of porous silicon by solvents. J Am Chem Soc 114(5):1911–1912

    Google Scholar 

  • Lazzerini GM, Strambini LM, Barillaro G (2013) Addressing reliability and degradation of chemitransistor sensors by electrical tuning of the sensitivity. Sci Rep 3:1161

    Google Scholar 

  • Lee EJ, Ha JS, Sailor MJ (1995) Photoderivatization of the surface of luminescent porous silicon with formic acid. J Am Chem Soc 117:8295–8296

    Google Scholar 

  • Letant SE, Sailor MJ (2000) Detection of HF gas with a porous silicon interferometer. Adv Mater 12(5):355–359

    Google Scholar 

  • Létant SE, Content S, Tan TT, Zenhausern F, Sailor MJ (2000) Integration of porous silicon chips in an electronic artificial nose. Sens Actuators B 69:193–198

    Google Scholar 

  • Lewis SE, DeBoer JR, Gole JL, Hesketh PJ (2005) Sensitive, selective, and analytical improvements to a porous silicon gas sensor. Sens Actuator B 110:54–65

    Google Scholar 

  • Lewis SE, DeBoera JR, Gole JL (2007) A pulsed system frequency analysis for device characterization and experimental design: application to porous silicon sensors and extension. Sens Actuator B 122:20–29

    Google Scholar 

  • Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ (2003) Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299:2045–2047

    Google Scholar 

  • Lin H, Gao T, Fantini J, Sailor MJ (2004) A porous silicon-palladium composite film for optical interferometric sensing of hydrogen. Langmuir 20(12):5104–5108

    Google Scholar 

  • Liua R, Schmedake TA, Li YY, Sailor MJ, Fainman Y (2002) Novel porous silicon vapor sensor based on polarization interferometry. Sens Actuators B 87:58–62

    Google Scholar 

  • Luongo K, Sine A, Bhansali S (2005) Development of a highly sensitive porous Si-based hydrogen sensor using Pd nano-structures. Sens Actuator B 111–112:125–129

    Google Scholar 

  • Mareš JJ, Krištofik J, Hulicius E (1995) Influence of humidity on transport in porous silicon. Thin Solid Films 255:272–275

    Google Scholar 

  • Massera E, Nasti I, Quercia L, Rea I, Di Francia G (2004) Improvement of stability and recovery time in porous-silicon-based NO2 sensor. Sens Actuator B 102:195–197

    Google Scholar 

  • Mizsei J (2007) Gas sensor applications of porous Si layers. Thin Solid Films 515:8310–8315 (Review)

    Google Scholar 

  • Moretti L, Rea I, De Stefano L, Rendina I (2007) Periodic versus aperiodic: enhancing the sensitivity of porous silicon based optical sensors. Appl Phys Lett 90:191112

    Google Scholar 

  • Moshnikov VA, Gracheva I, Lenshin AS, Spivak YM, Anchkov MG, Kuznetsov VV, Olchowik JM (2012) Porous silicon with embedded metal oxides for gas sensing applications. J Non-Cryst Solid 358:590–595

    Google Scholar 

  • Motahashi A, Kawakami M, Aoyagi H, Kinoshita K, Satou A (1995) Gas identification by a single gas sensor using porous silicon as the sensitive material. Jpn J Appl Phys 34:5840–5843

    Google Scholar 

  • Mulloni V, Gaburro Z, Pavesi L (2000) Porous silicon microcavities as optical and electrical chemical sensors. Phys Stat Solid (a) 182:479–483

    Google Scholar 

  • Oton CJ, Pancheri L, Gaburro Z, Pavesi L, Baratto C, Faglia G, Sberveglieri G (2003) Multiparametric porous silicon gas sensors with improved quality and sensitivity. Phys Stat Sol (a) 197:523–527

    Google Scholar 

  • Ozdemir S, Gole JL (2007) The potential of porous silicon gas sensor. Curr Opin Solid State Mater Sci 11:92–100 (Review)

    Google Scholar 

  • Ozdemir S, Gole JL (2010) A phosphine detection matrix using nanostructure modified porous silicon gas sensors. Sens Actuator B 151:274–280

    Google Scholar 

  • Pancheri L, Oton CJ, Gaburro Z, Soncini G, Pavesi L (2003) Very sensitive porous silicon NO2 sensor. Sens Actuator B 89:237–239

    Google Scholar 

  • Peng K-Q, Wang X, Lee S-T (2009) Gas sensing properties of single crystalline porous silicon nanowires. Appl Phys Lett 95:243112

    Google Scholar 

  • Peng S, Ming H, Mingda L, Shuangyun M (2012) Nano-WO3 film modified macro-porous silicon (MPS) gas sensor. J Semicond 33(5):054012

    Google Scholar 

  • Prabakaran R, Aguas H, Fortunato E, Martins R, Ferreira I (2008) n-PS/a-Si:H heterojunction for device application. J Non-Cryst Solid 354:2632–2636

    Google Scholar 

  • Rahimi F, Iraji zad A (2007) Characterization of Pd nanoparticle dispersed over porous silicon as a hydrogen sensor. J Phys D Appl Phys 40:7201–7209

    Google Scholar 

  • Razi F, Irajizad A, Rahimi F (2010) Investigation of hydrogen sensing properties and aging effects of Schottky like Pd/porous Si. Sens Actuator B 146:53–60

    Google Scholar 

  • Rea I, Iodice M, Coppola G, Rendina I, Marino A, De Stefano L (2009) A porous silicon-based Bragg grating waveguide sensor for chemical monitoring. Sens Actuators B 139(1):39–43

    Google Scholar 

  • Rehm JM, McLendon GL, Tsybeskov L, Fauchet PM (1995) How methanol affects the surface of blue and red emitting porous silicon. Appl Phys Lett 66:3669–3671

    Google Scholar 

  • Rehm JM, McLendon GL, Fauchet PM (1996) Conduction and valence band edges of porous silicon determined by electron transfer. J Am Chem Soc 118:4490–4491

    Google Scholar 

  • Rittersma ZM, Splinter A, Bodecker A, Benecke W (2000) A novel surface-micromachined capacitive porous silicon humidity sensor. Sens Actuator B 68:210–217

    Google Scholar 

  • Ruminski AM, Moore MM, Sailor MJ (2008) Humidity-compensating sensor for volatile organic compounds using stacked porous silicon photonic crystals. Adv Funct Mater 18:3418–3426

    Google Scholar 

  • Ruminski AM, King BH, Salonen J, Snyder JL, Sailor MJ (2010) Porous silicon-based optical microsensors for volatile organic analytes: effect of surface chemistry on stability and specificity. Adv Funct Mater 20:2874–2883

    Google Scholar 

  • Ruminski AM, Barillaro G, Chaffin C, Sailor MJ (2011) Internally referenced remote sensors for HF and Cl2 using reactive porous silicon photonic crystals. Adv Funct Mater 21:1511–1525

    Google Scholar 

  • Saha H (2008) Porous silicon sensors-elusive and erudite. IJOSSAIS 1(1):34–56 (Review)

    Google Scholar 

  • Salcedo WJ, Fernandez FJR, Rubim JC (2004) Photoluminescence quenching effect on porous silicon films for gas sensors application. Spectrochim Acta A 60:1065–1070

    Google Scholar 

  • Sankara Subramanian N, Vivek Sabaapathy R, Vickraman P, Vimal Kumar G, Sriram R, Santhi B (2007) Investigations on Pd: SnO2/porous silicon structures for sensing LPG and NO2 gas. Ionics 13(5):323–328

    Google Scholar 

  • Schechter M, Ben-Chorin AK (1995) Gas sensing properties of porous silicon. Anal Chem 67:3727–3732

    Google Scholar 

  • Seals L, Gole JL, Tse LA, Hesketh PJ (2002) Rapid, reversible, sensitive porous silicon gas sensor. J Appl Phys 91:2519–2523

    Google Scholar 

  • Šetkus A, Galdikas A, Mironas A, Strazdiene V, Šimkiene I, Ancutiene I, Janickis V, Kačiulis S, Mattogno G, Ingo GM (2001) The room temperature ammonia sensor based on improved CuxS-micro-porous-Si structure. Sens Actuator B 78:208–215

    Google Scholar 

  • Shang Y, Wang X, Xu E, Tong C, Wu J (2011a) Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye. Anal Chim Acta 685(1):58–64

    Google Scholar 

  • Shang Y, Zhang H, Wang X, Wu J (2011b) An optical olfactory sensor based on porous silicon infiltrated with room-temperature ionic liquid arrays. Chem Eur J 17:13400–13404

    Google Scholar 

  • Snow PA, Squire EK, Russell PSJ (1999) Vapor sensing using the optical properties of porous silicon Bragg mirrors. J Appl Phys 86(4):1781–1784

    Google Scholar 

  • Song JH, Sailor MJ (1997) Quenching of photoluminescence from porous silicon by aromatic molecules. J Am Chem Soc 119:7381–7385

    Google Scholar 

  • Stievenard D, Deresmes D (1995) Are electrical properties of an aluminum–porous silicon junction governed by dangling bonds? Appl Phys Lett 67(11):1570–1572

    Google Scholar 

  • Sweetman MJ, Voelcker NH (2012) Chemically patterned porous silicon photonic crystals towards internally referenced organic vapour sensors. RSC Adv 2:4620–4622

    Google Scholar 

  • Taliercio T, Dilhan M, Massone E, Gué AM, Fraisse B, Foucaran A (1995) Realization of porous silicon membranes for gas sensor applications. Thin Solid Films 255:310–312

    Google Scholar 

  • Torres-Costa V, Agulló-Rueda F, Martín-Palma RJ, Martínez-Duart JM (2005) Porous silicon optical devices for sensing applications. Opt Mater 27:1084–1087

    Google Scholar 

  • Torres-Costa V, Salonen J, Jalkanen TM, Lehto V-P, Martín-Palma RJ, Martínez-Duart JM (2009) Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity. Phys Stat Sol (a) 206:1306–1308

    Google Scholar 

  • Vrkoslav V, Jelínek I, Broncová G, Král V, Dian J (2006) Polypyrrole-functionalized porous silicon for gas sensing applications. Mater Sci Eng C 26:1072–1076

    Google Scholar 

  • Vrkoslav V, Jelínek I, Trojan T, Jindřich J, Dian J (2007) Porous silicon with β-cyclodextrin modified surface for photoluminescence sensing of organic molecules in gas and liquid phase. Physica E 38:200–204

    Google Scholar 

  • Wang G, Arwin H (2002) Modification of vapor sensitivity in ellipsometric gas sensing by copper deposition in porous silicon. Sens Actuators B 85:95–103

    Google Scholar 

  • Zangooie S, Bjorklund R, Arwin H (1997) Vapor sensitivity of thin porous silicon layers. Sens Actuators B 43:168–174

    Google Scholar 

  • Zangooie S, Jansson R, Arwin H (1998) Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption, and liquid penetration. J Vac Sci Techol A 16(5):2901–2912

    Google Scholar 

  • Zangooie S, Jansson R, Arwin H (1999) Ellipsometric characterization of anisotropic porous silicon Fabry–Pérot filters and investigation of temperature effects on capillary condensation efficiency. J Appl Phys 86(2):850–858

    Google Scholar 

  • Zhang W, de Vasconcelos EA, Uchida H, Katsube T, Nakatsubo T, Nishioka Y (2000) Study of silicon Schottky diode structures for NOx gas detection. Sens Actuator B 65:154–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Barillaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Barillaro, G. (2014). Porous Silicon Gas Sensing. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_86-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_86-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics