Skip to main content
Log in

Analysis of the Vacancy System of Restructured Zinc by the Positron Annihilation Method

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have obtained restructured zinc (high-purity zinc prepared by mechanothermal action of various intensity levels) and have analyzed its structure by the positron spectroscopy methods. Bulk vacancytype defects (vacancies and vacancy clusters), as well as the regions with an extended crystal lattice, have been discovered in the restructured samples and analyzed quantitatively. These effects are responsible for the emergence of internal microstresses in the material, which modify its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Vrancken, L. Thijs, J. P. Kruth, and J. van Humbeeck, J. Alloys Compd. 541, 177 (2012).

    Article  Google Scholar 

  2. E. Santos, F. Abe, Y. Kitamura, K. Osakada, and M. Shiomi, in Proc. 13th Annual Int. Solid Freeform Fabrication Symp., Austin, Texas, 2002, p. 180.

    Google Scholar 

  3. M. Xue, Y. Heichal, S. Chandra, and J. Mostaghimi, J. Mater. Sci. 42, 9 (2007).

    Article  ADS  Google Scholar 

  4. A. Ratle, V. C. Pandolfelli, C. Allaire, and M. Rigaud, Br. Ceram. Trans. 96, 225 (1997).

    Google Scholar 

  5. K. Edalati, T. Fujioka, and Z. Horita, Mater. Sci. Eng., A 497, 168 (2008).

    Article  Google Scholar 

  6. S. F. Pugh, London, Edinburgh Dublin Philos. Mag. J. Sci. 45, 823 (1954).

    Article  Google Scholar 

  7. M. D. Hollingsworth, Science 295, 2410 (2002).

    ADS  Google Scholar 

  8. D. K. Finnemore, T. F. Stromberg, and C. A. Swenson, Phys. Rev. 149, 231 (1966).

    Article  ADS  Google Scholar 

  9. V. N. Brudnyi, A. V. Kosobutsky, and N. G. Kolin, Phys. Solid State 53, 679 (2011).

    Article  ADS  Google Scholar 

  10. L. A. Pesin, I. V. Gribov, N. A. Moskvina, V. L. Kuznetsov, S. E. Evsyukov, M. E. Bogatyreva, and A. V. Khananova, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz., No. 32, 249 (2011).

    Google Scholar 

  11. Y. S. Bordulev, R. S. Laptev, V. N. Kudiyarov, and A. M. Lider, Adv. Mater. Res. 880, 93 (2014).

    Article  Google Scholar 

  12. R. S. Laptev, Y. S. Bordulev, V. N. Kudiyarov, A. M. Lider, and G. V. Garanin, Adv. Mater. Res. 880, 134 (2014).

    Article  Google Scholar 

  13. P. V. Kuznetsov, Y. P. Mironov, A. I. Tolmachev, T. V. Rakhmatulina, Y. S. Bordulev, R. S. Laptev, A.M. Lider, A. A. Mikhaylov, and A. V. Korznikov, AIP Conf. Proc. 1623, 327 (2014).

    Article  Google Scholar 

  14. R. S. Laptev, A. M. Lider, Y. S. Bordulev, V. N. Kudiiarov, and D. V. Gvozdyakov, in Multifunctional Materials: Development and Application, Ed. by I. Kurzina and A. Godymchuk (Trans Tech., 2016), p. 256.

  15. P. Kuznetsov, J. Cizek, P. Hruska, W. Anwad, Yu. Bordulev, A. Lider, R. Laptev, and Yu. Mironov, AIP Conf. Proc. 1683, 020116 (2015).

    Article  Google Scholar 

  16. D. Giebel and J. Kansy, Phys. Proc. 35, 122 (2012).

    Article  ADS  Google Scholar 

  17. P. Hautojärvi and C. Corbel, in Positron Spectroscopy of Solids, Ed. by A. Dupasquier and A. P. Mills (IOS Press, 1995), p. 491.

  18. C. Hidalgo, S. Linderoth, and N. de Diego, Phys. Rev. B 36, 6740 (1987).

    Article  ADS  Google Scholar 

  19. J. M. Campillo, F. Plazaola, and N. de Diego, J. Phys.: Condens. Matter 12, 9715 (2000).

    ADS  Google Scholar 

  20. O. M. Britkov, S. A. Gavrilov, V. I. Grafutin, V. V. Dyagilev, V. V. Kalugin, O. V. Ilyukhina, and Yu. V. Funtikov, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 3, 40 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Spitsyn.

Additional information

Original Russian Text © E.M. Solov’ev, B.V. Spitsyn, R.S. Laptev, A.M. Lider, Yu.S. Bordulev, A.A. Mikhailov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 6, pp. 860–863.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, E.M., Spitsyn, B.V., Laptev, R.S. et al. Analysis of the Vacancy System of Restructured Zinc by the Positron Annihilation Method. Tech. Phys. 63, 834–837 (2018). https://doi.org/10.1134/S106378421806021X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421806021X

Navigation