Skip to main content
Log in

Heterostructures with InGaAs/GaAs quantum dots doped by transition elements. Part I: Photoluminescence properties

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The optical properties of InGaAs/GaAs quantum dot heterostructures that are doped by manganese and chromium during growth by Metal-organic vapor phase epitaxy have been studied. Surface topography photoluminescence spectra measurements have demonstrated the possibility of controlling the spectral characteristics of the structure by varying quantum well growth conditions and sizes in the presence of impurity atoms. Research results are explained by the peculiarities of InAs nanoclusters formation on the GaAs surface in the presence of Mn and Cr atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg and C. Ribbat, Microelectron. J. 34, 323 (2003).

    Article  Google Scholar 

  2. Zh. I. Alferov, Semiconductors 32, 1 (1998).

    Article  ADS  Google Scholar 

  3. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Zh. I. Alferov, and D. Bimberg, Semiconductors 32, 343 (1998).

    Article  ADS  Google Scholar 

  4. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  5. A. E. Zhukov, B. V. Volovik, S. S. Mikhrin, N. A. Maleev, A. F. Tsatsul’nikov, E. V. Nikitina, I. N. Kayander, V. M. Ustinov, and N. N. Ledentsov, Tech. Phys. Lett. 27, 734 (2001).

    Article  ADS  Google Scholar 

  6. D. L. Huffaker and D. G. Deppe, Appl. Phys. Lett. 73, 520 (1998).

    Article  ADS  Google Scholar 

  7. V. I. Zubkov, C. M. A. Kapteyn, A. V. Solomonov, and D. J. Bimberg, J. Phys.: Condens. Matter 17, 2435 (2005).

    ADS  Google Scholar 

  8. B. N. Zvonkov, I. A. Karpovich, N. V. Baidus, D. O. Filatov, S. V. Morozov, and Yu. Yu. Gushina, Nanotecnology 11, 221 (2000).

    Article  ADS  Google Scholar 

  9. B. N. Zvonkov, O. V. Vikhrova, Yu. A. Danilov, E. S. Demidov, P. B. Demina, M. V. Dorokhin, Yu. N. Drozdov, V. V. Podol’skii, and M. V. Sapozhnikov, J. Opt. Technol. 75, 389 (2008).

    Article  Google Scholar 

  10. M. Holub, S. Chakrabarti, S. Fathpour, P. Bhattacharya, Y. Lei, and S. Ghosh, Appl. Phys. Lett. 85, 973 (2004).

    Article  ADS  Google Scholar 

  11. A. D. Bouravleuv, V. N. Nevedomskii, E. V. Ubyivovk, V. F. Sapega, A. I. Khrebtov, Yu. B. Samsonenko, G. E. Cirlin, and V. M. Ustinov, Semiconductors 47, 1037 (2013).

    Article  ADS  Google Scholar 

  12. H. J. Meng, J. Lu, L. Chen, P. F. Xu, J. J. Deng, and J. H. Zhao, Phys. Lett. A 373, 1379 (2009).

    Article  ADS  Google Scholar 

  13. M. V. Dorokhin, A. V. Zdoroveishev, E. I. Malysheva, Yu. A. Danilov, B. N. Zvonkov, and A. E. Sholina, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 6, 511 (2012).

    Article  Google Scholar 

  14. I. A. Karpovich, N. V. Baidus, B. N. Zvonkov, S. V. Morozov, D. O. Filatov, and A. V. Zdoroveishev, Nanotecnology 12, 425 (2001).

    Article  ADS  Google Scholar 

  15. I. A. Karpovich, A. V. Zdoroveishev, A. P. Gorshkov, D. O. Filatov, and R. N. Skvortsov, Phys. Low-Dimens. Struct. 3/4, 191 (2003).

    Google Scholar 

  16. A. V. Zdoroveishev, Candidate’s Dissertation in Mathematics and Physics (Nizhny Novgorod, 2006).

    Google Scholar 

  17. S. V. Zaitsev, V. D. Kulakovskii, M. V. Dorokhin, Yu. A. Danilov, P. B. Demina, M. V. Sapozhnikov, O. V. Vikhrova, and B. N. Zvonkov, Phys. E 41, 652 (2009).

    Article  Google Scholar 

  18. M. V. Dorokhin, B. N. Zvonkov, Yu. A. Danilov, V. V. Podolskii, P. B. Demina, O. V. Vikhrova, E. I. Malysheva, and M. V. Sapozhnikov, Int. J. Nanosci. 6, 221 (2007).

    Article  Google Scholar 

  19. Y. K. Zhou, H. Asahi, J. Asakura, S. Okumura, K. Asami, and S. J. Gonda, J. Cryst. Growth 221, 605 (2000).

    Article  ADS  Google Scholar 

  20. S. Nagahara, S. Tsukamoto, and Y. J. Arakawa, J Cryst. Growth 301–302, 797 (2007).

    Article  Google Scholar 

  21. A. V. Zdoroveishev, M. V. Dorokhin, E. I. Malysheva, and P. B. Demina, in Innovation Technologies, Ed. by S. V. Bulyarskii (Ul’yanovsk. Gos. Univ., Ul’yanovsk, 2010), Vol. 3, p.84.

    Google Scholar 

  22. M. Poggio, R. C. Myers, N. P. Stern, A. C. Gossard, and D. D. Awschalom, Phys. Rev. B 72, 235313 (2005).

    Article  ADS  Google Scholar 

  23. E. F. Schubert, Light-Emitting Diodes (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  24. L. Pavesi and M. Guzzi, J. Appl. Phys. 75, 4779 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dorokhin.

Additional information

Original Russian Text © M.V. Dorokhin, A.V. Zdoroveyshchev, E.I. Malysheva, Yu.A. Danilov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 9, pp. 1389–1394.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorokhin, M.V., Zdoroveyshchev, A.V., Malysheva, E.I. et al. Heterostructures with InGaAs/GaAs quantum dots doped by transition elements. Part I: Photoluminescence properties. Tech. Phys. 62, 1398–1402 (2017). https://doi.org/10.1134/S1063784217090055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217090055

Navigation