Skip to main content
Log in

Two-dimensional model of the Penning discharge in a cylindrical chamber with the axial magnetic field

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The drift–diffusion model of a Penning discharge in molecular hydrogen under pressures of about 1 Torr with regard to the external electric circuit has been proposed. A two-dimensional axially symmetric discharge geometry with a cylindrical anode and flat cathodes perpendicular to the symmetry axis has been investigated. An external magnetic field of about 0.1 T is applied in the axial direction. Using the developed drift–diffusion model, the electrodynamic structure of a Penning discharge in the pressure range of 0.5–5 Torr at a current source voltage of 200–500 V is numerically simulated. The evolution of the discharge electrodynamic structure upon pressure variations in zero magnetic field (the classical glow discharge mode) and in the axial magnetic field (Penning discharge) has been studied using numerical experiments. The theoretical predictions of the existence of an averaged electron and ion motion in a Penning discharge both in the axial and radial directions and in the azimuthal direction have been confirmed by the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Penning, Physica 3, 873 (1936).

    Article  ADS  Google Scholar 

  2. V. L. Granovskii, Electric Current in Gas. Steady Current (Nauka, Moscow, 1971).

    Google Scholar 

  3. V. G. Markov, D. E. Prokhorovich, A. G. Sadilin, and N. N. Shchitov, Usp. Prikl. Fiz. 1, 23 (2013).

    Google Scholar 

  4. M. D. Gabovich, N. V. Pleshivtsev, and N. N. Semashko, Ion and Atomic Beams for Controlled Thermonuclear Fusion and Engineering Applications (Energoatomizdat, Moscow, 1986).

    Google Scholar 

  5. M. M. Sitnikov, Zh. Tekh. Fiz. 8, 1527 (1938).

    Google Scholar 

  6. R. F. Mukhamedov, Zh. Tekh. Fiz. 43, 1677 (1973).

    Google Scholar 

  7. E. N. Hirsch, Br. J. Appl. Phys. 15, 1535 (1964).

    Article  ADS  Google Scholar 

  8. Yu. V. Korotaev, I. N. Meshkov, V. N. Polyakov, A. V. Smirnov, E. M. Syresin, R. Ley, and G. Tranquille, Tech. Phys. 42, 1353 (1997).

    Article  Google Scholar 

  9. S. P. Nikulin, Tech. Phys. 43, 795 (1998).

    Article  Google Scholar 

  10. L. A. Zjulkova, A. V. Kozyrev, and D. I. Proskurovsky, Tech. Phys. 50, 1451 (2005).

    Article  Google Scholar 

  11. S. C. Brown, Basic Data of Plasma Physics (Wiley, New York, 1959).

    Google Scholar 

  12. S. T. Surzhikov, Tech. Phys. Lett. 43, 169 (2017).

    Article  ADS  Google Scholar 

  13. S. T. Surzhikov and J. S. Shang, Plasma Sources Sci. Technol. 23, 054017 (2014).

    Article  ADS  Google Scholar 

  14. S. T. Surzhikov, Computational Physics of Electric Discharges in Gas Flows (Walter de Gruyter, 2013).

    MATH  Google Scholar 

  15. Yu. E. Kreindel’ and A. S. Ionov, Zh. Tekh. Fiz. 34, 1199 (1964).

    Google Scholar 

  16. E. M. Reikhrudel’, A. V. Chernetskii, V. V. Mikhnevich, and I. A. Vasil’eva, Zh. Tekh. Fiz. 22, 1945 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Surzhikov.

Additional information

Original Russian Text © S.T. Surzhikov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 8, pp. 1165–1176.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surzhikov, S.T. Two-dimensional model of the Penning discharge in a cylindrical chamber with the axial magnetic field. Tech. Phys. 62, 1177–1188 (2017). https://doi.org/10.1134/S1063784217080278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217080278

Navigation