Skip to main content
Log in

Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A two-dimensional model of the non-equilibrium unipolar discharge occurring in the plasma–sheath boundary region of a transferred-arc was developed. This model was used to study the current transfer to the nozzle (1 mm diameter) of a 30 A arc cutting torch operated with oxygen. The energy balance and chemistry processes in the discharge were described by using a kinetic block of 45 elementary reactions and processes with the participation of 13 species including electronically excited particles. The nonlocal transport of electrons was accounted for into the fluid model. The dependence of the ion mobility with the electric field was also considered. Basic discharge properties were described. It has been found that a large part (~ 80%) of the total electric power (1700 mW) delivered in the bulk of the sheath region is spent in heating the positive ions and further dissipated through collisions with the neutral particles. The results also showed that the electron energy loss in inelastic collisions represents only ~ 25% of the electron power and that about 63% of the power spent on gas heating is produced by the ion–molecule reaction, the electron–ion and ion–ion recombination reactions, and by the electron attachment. The rest of the power converted into heat is contributed by dissociation by electron-impact, dissociative ionization and quenching of O(1D). Some fast gas heating channels which are expected to play a key role in the double-arcing phenomena in oxygen gas were also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Riemann KU (1991) J Phys D Appl Phys 24:493–518

    Article  Google Scholar 

  2. Riemann KU (2003) J Phys D Appl Phys 36:2811–2820

    Article  CAS  Google Scholar 

  3. Franklin RN (2003) J Phys D Appl Phys 36:R309–R320

    Article  CAS  Google Scholar 

  4. Franklin RN (2003) J Phys D Appl Phys 36:2821–2824

    Article  CAS  Google Scholar 

  5. Franklin RN (2004) J Phys D Appl Phys 37:1342–1345

    Article  CAS  Google Scholar 

  6. Benilov MS (2009) Plasma Sources Sci Technol 18:014005

    Article  Google Scholar 

  7. Brinkmann RP (2011) J Phys D Appl Phys 44:042002

    Article  Google Scholar 

  8. Hill RJ, Jones GR (1979) J Phys D Appl Phys 12:1707–1720

    Article  Google Scholar 

  9. George DW, Richards PH (1968) Brit J Appl Phys 1:1171–1182

    Google Scholar 

  10. Nemchinsky VA, Severance WS (2006) J Phys D Appl Phys 39:R423–R438

    Article  CAS  Google Scholar 

  11. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas, fundamentals and applications, vol 1. Plenum Press, New York

    Book  Google Scholar 

  12. Prevosto L, Kelly H, Mancinelli B (2009) J Appl Phys 105:013309

    Article  Google Scholar 

  13. Prevosto L, Kelly H, Mancinelli B (2011) J Appl Phys 110:083302

    Article  Google Scholar 

  14. Gielen HJG, Schram DC (1990) IEEE Trans Plasma Sci 18:127–133

    Article  Google Scholar 

  15. Insepov Z, Norem J (2013) J Vac Sci Technol, A 31:011302

    Article  Google Scholar 

  16. Nemchinsky VA (2009) J Phys D Appl Phys 42:205209

    Article  Google Scholar 

  17. Mancinelli B, Minotti FO, Prevosto L, Kelly H (2014) J Appl Phys 116:023301

    Article  Google Scholar 

  18. Prevosto L, Kelly H, Mancinelli B (2009) J Appl Phys 105:123303

    Article  Google Scholar 

  19. Prevosto L, Mancinelli B, Kelly H (2008) Phys Scr T131:014026

    Article  Google Scholar 

  20. Boeuf JP, Pitchford LC (1995) Phys Rev E 51:1376–1390

    Article  CAS  Google Scholar 

  21. Sheridan TE, Goree J (1991) Phys Fluids B 10:2796–2804

    Article  Google Scholar 

  22. Raizer YP (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  23. Rafatov I, Bogdanov EA, Kudryavtsev AA (2012) Phys Plasmas 19:033502

    Article  Google Scholar 

  24. Chen G, Raja LL (2004) J Appl Phys 96:6073–6081

    Article  CAS  Google Scholar 

  25. Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci Technol 14:722–733

    Article  CAS  Google Scholar 

  26. Aleksandrov NL, Kindysheva SV, Nudnova MM, Starikovskiy AY (2010) J Phys D Appl Phys 43:255201

    Article  Google Scholar 

  27. Popov NA (2001) Plasma Phys Rep 27:886–896

    Article  Google Scholar 

  28. Popov NA (2011) J Phys D Appl Phys 44:285201

    Article  Google Scholar 

  29. Mintoussov EI, Pendleton SJ, Gerbault FG, Popov NA, Starikovskaia SM (2011) J Phys D Appl Phys 44:285202

    Article  Google Scholar 

  30. Pintassilgo CD, Guerra V (2015) Plasma Sources Sci Technol 24:055009

    Article  Google Scholar 

  31. Krishnakumar E, Srivastava SK (1992) Int J Mass Spectrom Ion Proc 113:1–12

    Article  CAS  Google Scholar 

  32. Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207–220

    Article  CAS  Google Scholar 

  33. Slanger TG, Black G (1978) J Chem Phys 68:998–1000

    Article  CAS  Google Scholar 

  34. Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma kinetics in atmospheric gases. Springer, New York

    Book  Google Scholar 

  35. Florescu-Mitchell AI, Mitchell JBA (2006) Phys Rep 430:277–374

    Article  CAS  Google Scholar 

  36. Aleksandrov NL, Anokhin EM, Kindysheva SV, Kirpichnikov AA, Kosarev IN, Nudnova MM, Starikovskaia SM, Starikovskii AY (2012) J Phys D Appl Phys 45:255202

    Article  Google Scholar 

  37. Dulaney JL, Biondi MA, Johnsen R (1998) Phys Rev A 37:2539–2542

    Article  Google Scholar 

  38. Johnston HS (1968) Technical Report NSRDS-NBS-20, National Bureau of Standards

  39. Gomez S, Steen PG, Grahama WG (2002) Appl Phys Lett 81:19–21

    Article  CAS  Google Scholar 

  40. Yolles RS, Wise H (1968) J Chem Phys 48:5109–5113

    Article  CAS  Google Scholar 

  41. Weissman S, Mason EA (1962) J Chem Phys 37:1289–1300

    Article  CAS  Google Scholar 

  42. Turner MM (2015) Plasma Sources Sci Technol 24:035027

    Article  Google Scholar 

  43. Viehland LA, Mason EA (1995) At Data Nucl Data Tables 60:37–95

    Article  CAS  Google Scholar 

  44. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, New York

    Book  Google Scholar 

  45. Gudmundsson JT, Marakhtanov AM, Patel KK, Gopinath VP, Lieberman MA (2000) J Phys D Appl Phys 33:1323–1331

    Article  CAS  Google Scholar 

  46. Gudmundsson JT, Kouznetsov IG, Patel KK, Lieberman MA (2001) J Phys D Appl Phys 34:1100–1109

    Article  CAS  Google Scholar 

  47. Gudmundsson JT (2004) J Phys D Appl Phys 37:2073–2081

    Article  CAS  Google Scholar 

  48. Vagin NP, Ionin AA, KlimachevYuM Kochetov IV, Napartovich AP, Sinitsyn DV, Yuryshev NN (2003) Plasma Phys Rep 29:211–219

    Article  CAS  Google Scholar 

  49. Toneli DA, Pessoa RS, Roberto M, Gudmundsson JT (2015) J Phys D Appl Phys 48:325202

    Article  Google Scholar 

  50. Hannesdottir H, Gudmundsson JT (2016) Plasma Sources Sci Technol 25:055002

    Article  Google Scholar 

  51. Phelps AB, Pitchford LC (1985) Phys Rev A 31:2932–2949

    Article  CAS  Google Scholar 

  52. Rapp D, Briglia D (1965) J Chem Phys 43:1480–1489

    Article  CAS  Google Scholar 

  53. Eliasson B, Kogelschatz U (1986), Rep. No. CH-5405 (Brown BoveriForschungszentrum, Baden)

  54. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Willey, New York

    Google Scholar 

  55. Almeida PGC, Benilov MS, Naidis GV (2002) J Phys D Appl Phys 35:1577–1584

    Article  CAS  Google Scholar 

  56. Ellis HW, Pai RY, McDaniel EW, Mason EA, Viehland LA (1976) At Data Nucl Data Tables 17:177–210

    Article  CAS  Google Scholar 

  57. Levin E, Wright MJ (2004) J. Thermophys Heat Transf 18:143–147

    Article  CAS  Google Scholar 

  58. Lindsay BG, SieglaffDR Smith KA, Stebbings RF (2001) J Geophys Res 106:8197–8203

    Article  CAS  Google Scholar 

  59. Lee C, Graves DB, Lieberman MA, Hess DW (1994) J Electrochem Soc 41:1546–1555

    Article  Google Scholar 

  60. Ardelyan NV, Bychkov VL, Kochetov IG, Kosmachevskii KV (2011) IEEE Trans Plasma Sci 39:3326–3330

    Article  CAS  Google Scholar 

  61. Robson RE (1986) J Chem Phys 85:4486–4501

    Article  CAS  Google Scholar 

  62. Rapp D, Englander-Golden P, Briglia DD (1965) J Chem Phys 42:4081–4085

    Article  CAS  Google Scholar 

  63. Capitelli M, Bardsley JN (1989) Non–equilibrium processes in partially ionized gases. Plenum Press, New York

    Google Scholar 

  64. Popov NA (2016) Plasma Sources Sci Technol 25:044003

    Article  Google Scholar 

  65. Flitti A, Pancheshnyi S (2009) Eur Phys J Appl Phys 45:21001

    Article  Google Scholar 

  66. Piper LG (1988) J Chem Phys 88:231–239

    Article  CAS  Google Scholar 

  67. Piper LG (1988) J Chem Phys 88:6911–6921

    Article  CAS  Google Scholar 

  68. Komuro A, Ono R (2014) J Phys D Appl Phys 47:155202 (13 pp)

  69. Ferguson EE (1986) J Phys Chem 90:731–738

    Article  CAS  Google Scholar 

  70. Ervin KM, Anusiewicz I, Skurski P, Simons J, Lineberger WC (2003) J Phys Chem A 107:8521–8529

    Article  CAS  Google Scholar 

  71. Hagelaar GJM, de Hoog FJ, Kroesen GMW (2000) Phys Rev E 62:1452–1454

    Article  CAS  Google Scholar 

  72. Go DB, Pohlman DA (2010) J Appl Phys 107:103303

    Article  Google Scholar 

  73. Leveroni E, Pfender E (1989) Rev Sci Instrum 60:3744–3749

    Article  Google Scholar 

  74. Pancheshnyi SV, Starikovskii AY (2003) J Phys D Appl Phys 36:2683–2691

    Article  CAS  Google Scholar 

  75. Scharfetter DL, Gummel HK (1969) IEEE Trans Electron Devices 16:64–77

    Article  Google Scholar 

  76. Hagelaar GJM, Kroesen GMW (2000) J Comp Phys 159:1–12

    Article  Google Scholar 

  77. Stone HL (1968) SIAM J Numer Anal 5:530–558

    Article  Google Scholar 

  78. Kulikovsky AA (1995) J Comp Phys 119:149–155

    Article  Google Scholar 

  79. Godyak A, Sternberg N (1990) Phys Rev A 42:2299–2312

    Article  CAS  Google Scholar 

  80. Sakiyama Y, Graves DB (2007) J Appl Phys 101:073306

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the CONICET (PIP 11220120100453) and Universidad Tecnológica Nacional (PID 2264 and 4626). L. P. and F. O. M. are members of the CONICET. J. C. C. thanks the CONICET for his doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Prevosto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancinelli, B., Prevosto, L., Chamorro, J.C. et al. Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties. Plasma Chem Plasma Process 38, 147–176 (2018). https://doi.org/10.1007/s11090-017-9859-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9859-x

Keywords

Navigation