Skip to main content
Log in

Thermokinetic model of fracture of heterogeneous materials and peculiarities of its numerical realization under the action of RF electromagnetic fields

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The fracture of rocks has been investigated theoretically and experimentally. The model of evolution of micro- and macrocracking under the action of electromagnetic fields with the help of rf electrodes has been proposed. The calculation of the fields of temperature and thermoelastic stresses makes it possible to study the evolution of macrocracking and to establish the directions of evolution in the case of their 3D configuration. The mechanisms of the formation of a main crack for regions with different tensile stresses have been established. The main crack can evolve towards the range of tensile stresses lower than the ultimate tensile stress. The possibility of controlling the evolution of the main crack by selecting stresses over the length of the crack formed and the heating time has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vl. V. Salomatov, S. E. Pashchenko, S. O. Sladkov, and Vas. V. Salomatov, J. Eng. Phys. Thermophys. 89, 50 (2016).

    Article  Google Scholar 

  2. D. H. Meadows, D. L. Meadows, J. Randers, and W. W. Behrens III, The Limits to Growth (University Books, New York, 1972), pp. 70–77.

    Google Scholar 

  3. M. Rhodes, Introduction to Particle Technology, 2nd ed. (John Wiley & Sons, 2008).

    Book  Google Scholar 

  4. K. P. Singh and M. C. Kakati, Res. Ind. 39, 198 (1994).

    Google Scholar 

  5. O. S. Danilov, V. A. Mikheev, and T. V. Moskalenko, Gorn. Inf.-Anal. Byull., No. 3, 203 (2010).

    Google Scholar 

  6. O. S. Danilov, V. A. Mikheev, and T. V. Moskalenko, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk 13, 1264 (2011).

    Google Scholar 

  7. S. Marland, B. Han, A. Merchant, and N. Rowson, Fuel 79, 1283 (2000).

    Article  Google Scholar 

  8. S. Marland, A. Merchant, and N. Rowson, Fuel 80, 1839 (2001).

    Article  Google Scholar 

  9. O. S. Danilov, V. A. Mikheev, and T. V. Moskalenko, Gorn. Inf.-Anal. Byull., No. 4, 285 (2009).

    Google Scholar 

  10. L. Ge, Y. Zhang, Z. Wang, J. Zhou, and K. Cen, Energy Convers. Manage. 71, 84 (2013).

    Article  Google Scholar 

  11. E. Lester and S. Kingman, Fuel 83, 1941 (2004).

    Article  Google Scholar 

  12. S. S. Krasnovskii, Gorn. Inf.-Anal. Byull., No. 3, 163 (1999)

    Google Scholar 

  13. A. P. Obraztsov, A. P. Uvarov, and A. G. Maksimenko, in Thermomechanical Methods of Rock Destruction (Naukova Dumka, Kiev, 1976), p. 149.

    Google Scholar 

  14. S. S. Krasnovskii, Extended Abstract of Candidate’s Dissertation in Engineering (Skochinsky Inst. of Mining, Moscow, 1999).

    Google Scholar 

  15. A. V. Dolgolaptev, Yu. D. Voronovskii, S. S. Krasnovskii, V. F. Nistratov, and A. P. Obraztsov, Gorn. Inf.-Anal. Byull. 10, 99 (2000).

    Google Scholar 

  16. M. S. Seehra and V. Singh, in Microwave Heating, Ed. by U. Chandra (Intech, 2011), pp. 164–168.

    Google Scholar 

  17. S. E. Pashchenko, S. V. Alekseenko, S. S. Pashchenko, V. V. Kolyada, and V. V. Salomatov, RF Patent No. 2514826, Byull. Izobret., No. 13 (2012).

    Google Scholar 

  18. A. G. Starovoit, E. I. Malyi, and M. S. Chemerinskii, Coke Chem. 53, 319 (2010).

    Article  Google Scholar 

  19. E. Lester, S. Kingman, C. Dodds, and J. Patrick, Fuel 85, 2057 (2006).

    Article  Google Scholar 

  20. E. Ruisànchez, A. Arenillas, E. J. Juàrez-Pèrez, and J. A. Menèndez, Fuel 102, 65 (2012).

    Article  Google Scholar 

  21. J. A. Menèndez, A. Arenillas, B. Fidalgo, Y. Fernàndez, L. Zubizarreta, E. G. Calvo, and J. M. Bermàdez, Fuel Process. Technol. 91, 1 (2010).

    Article  Google Scholar 

  22. J. A. Menèndez, E. J. Juàrez-Pèrez, E. Ruisànchez, J. M. Bermàdez, and A. Arenillas, Carbon 49, 346 (2010).

    Article  Google Scholar 

  23. P. M. Kanilo, V. I. Kazantsev, N. I. Rasyuk, K. Schünemann, and D. M. Varviv, Fuel 82, 187 (2003).

    Article  Google Scholar 

  24. D. M. Varviv, V. I. Kazantsev, P. M. Kanilo, N. I. Rasyuk, K. Schunemann, and S. V. Crytsayenko, Telecommun. Radio Eng. 61, 650 (2004).

    Article  Google Scholar 

  25. R. M. Hardgrove, Trans. Am. Soc. Mech. Eng. 54, 37 (1932).

    Google Scholar 

  26. E. E. Sergo, Crushing, Grinding, and Screening of Minerals. College Textbook (Nedra, Moscow, 1985).

    Google Scholar 

  27. L. G. Austin, P. Bagga, and M. Celik, Powder Technol. 28, 235 (1981).

    Article  Google Scholar 

  28. S. W. Kingman and N. A. Rowson, Miner. Eng. 11, 1081 (1998).

    Article  Google Scholar 

  29. M. S. Delibalta and O. Y. Toraman, Energy Sci. Technol. 3, 46 (2012).

    Google Scholar 

  30. B. K. Sahoo, S. De, and B. C. Meikap, Fuel Process. Technol. 92, 1920 (2011).

    Article  Google Scholar 

  31. B. K. Sahoo, S. De, M. Carsky, and B. C. Meikap, Ind. Eng. Chem. Res. 49, 3015 (2010).

    Article  Google Scholar 

  32. S. Kingman, BCURA Project B76. Microwave Pre- Treatment of Coal and Coal Blends to Improve Milling Performance. Final Report (University of Nottingham, 2006).

    Google Scholar 

  33. A. N. Didenko, Microwave Power Engineering: Theory and Practice (Nauka, Moscow, 2003).

    Google Scholar 

  34. S. Samanli, Fuel 90, 659 (2011).

    Article  Google Scholar 

  35. O. Y. Toraman, Energy Sources, Part A 32, 1794 (2010).

    Article  Google Scholar 

  36. M. S. Delibalta and O. Y. Toraman, Energy Sci. Technol. 3, 46 (2012).

    Google Scholar 

  37. M. Altiner, M. Yildirim, and N. Vapur, in Proc. XIII Int. Mineral Processing Symp., Bodrum, Turkey, 2012, p. 737.

    Google Scholar 

  38. S. Marland, B. Han, N. A. Rowson, and A. J. Merchant, Acta Montan. Slovaca 3, 351 (1998).

    Google Scholar 

  39. E. Lester and S. Kingman, Energy Fuels 18, 140 (2004).

    Article  Google Scholar 

  40. E. Lester, S. Kingman, and C. Dodds, Fuel 84, 423 (2005).

    Article  Google Scholar 

  41. B. K. Sahoo, S. De, and B. C. Meikap, Fuel Process. Technol. 92, 1920 (2011).

    Article  Google Scholar 

  42. H. Kumar, E. Lester, S. Kingman, R. Bourne, C. Avila, A. Jones, J. Robinson, P. M. Halleck, and J. P. Mathews, Int. J. Coal Geol. 88, 75 (2011).

    Article  Google Scholar 

  43. E. Ruisànchez, A. Arenillas, E. J. Juàrez-Pérez, and J. A. Menèndez, Fuel 102, 65 (2012).

    Article  Google Scholar 

  44. T. Takanashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).

    Article  ADS  Google Scholar 

  45. A. A. Belyaev, A. E. Belyaev, I. B. Ermolovich, S. M. Komirenko, R. V. Konakova, V. G. Lyapin, V. V. Milenin, E. A. Solov’ev, and M. V. Shevelev, Tech. Phys. 43, 1445 (1998).

    Article  Google Scholar 

  46. R. A. Red’ko, S. I. Budzulyak, D. V. Korbutyak, A. P. Lotsko, N. D. Vakhnyak, L. A. Demchyna, S. M. Kalytchuk, R. V. Konakova, V. V. Milenin, Yu. V. Bykov, S. V. Egorov, and A. G. Eremeev, Semiconductors 49, 895 (2015).

    Article  ADS  Google Scholar 

  47. A. V. Klyuchnik, Zh. Tekh. Fiz. 69, 99 (1992).

    Google Scholar 

  48. D. V. Korbutyak, A. P. Lotsko, N. D. Vakhnyak, L. A. Demchuna, R. V. Konakova, V. V. Milenin, and R. A. Red’ko, Semiconductors 45, 1133 (2011).

    Article  ADS  Google Scholar 

  49. I. B. Ermolovich, R. V. Konakova, V. V. Milenin, et al., Fiz. Khim. Tverd. Tela 7, 763 (2006).

    Google Scholar 

  50. I. B. Ermolovich, G. V. Milenin, V. V. Milenin, R. V. Konakova, and R. A. Red’ko, Tech. Phys. 52, 1173 (2007).

    Article  Google Scholar 

  51. S. N. Zhurkov, V. S. Kuksenko, Kh. F. Makhmudov, and A. V. Ponomarev, Dokl. Phys. 42, 420 (1997).

    ADS  Google Scholar 

  52. V. S. Kuksenko, N. G. Tomilin, Kh. F. Makhmudov, and A. V. Benin, Tech. Phys. Lett. 33, 62 (2007).

    Article  ADS  Google Scholar 

  53. V. S. Kuksenko, Kh. F. Makhmudov, M. D. Il’inov, and Z. M. Abdurakhmonov, Vestn. Inzh. Shk. Dal’nevost. Fed. Univ., No. 3 (20), 98 (2014).

    Google Scholar 

  54. V. S. Kuksenko, Kh. F. Makhmudov, V. A. Mansurov, U. Sultonov, and M. Z. Rustamova, J. Min. Sci. 45, 355 (2009).

    Article  Google Scholar 

  55. Kh. F. Makhmudov, Deform. Razrushenie Mater., No. 8, 41 (2012).

    Google Scholar 

  56. Kh. F. Makhmudov and V. S. Kuksenko, Phys. Solid State 47, 882 (2005).

    Article  ADS  Google Scholar 

  57. Kh. F. Makhmudov, V. S. Kuksenko, N. G. Tomilin, and A. V. Benin, Vestn. Tambov. Univ. Ser.: Estestv. Tekh. Nauki 18, 1909 (2013).

    Google Scholar 

  58. M. G. Menzhulin, Kh. F. Makhmudov, V. S. Kuksenko, and U. Sultonov, U., Vestn. Tambov. Univ. Ser.: Estestv. Tekh. Nauki 18, 1667 (2013).

    Google Scholar 

  59. M. G. Menzhulin, Kh. F. Makhmudov, and I. P. Shcherbakov, Thermokinetic Model and Dynamics of Microcracks in Rocks (Lambert Academic, 2014), p. 68.

    Google Scholar 

  60. M. G. Menzhulin, Kh. F. Makhmudov, and I. P. Shcherbakov, Science Today: Theory, Practice, Innovation (Rostov-on-Don, 2014), pp. 159–187.

    Google Scholar 

  61. Kh. F. Makhmudov, M. G. Menzhulin, M. V. Zakharyan, U. Sultonov, and Z. M. Abdurakhmanov, Tech. Phys. 60, 1651 (2015).

    Article  Google Scholar 

  62. M. G. Menzhulin, Kh. F. Makhmudov, N. G. Tomilin, A. V. Benin, U. Sultonov, and Z. M. Abdurakhmanov, Nauchn. Obozr., No. 24, 37 (2015).

    Google Scholar 

  63. W. Li, M. A. Ebadian, T. L. White, R. G. Grubb, and D. Foster, Int. J. Heat Mass Transfer 37, 1013 (1994).

    Article  Google Scholar 

  64. M. Bhattacharya, T. Basak, and R. Senagala, Chem. Eng. Sci. 66, 5832 (2011).

    Article  Google Scholar 

  65. A. P. Dmitriev and S. A. Goncharov, Thermal and Mixed Destruction of Rocks (Nedra, Moscow, 1978).

    Google Scholar 

  66. M. G. Menzhulin, A. N. Shishov, and S. V. Seryshev, in Physics and Mechanics of Rock Destruction in the Context of Prediction of Dynamic Phenomena (VNIMI, St. Petersburg, 1995), pp. 59–65.

    Google Scholar 

  67. Yu. M. Misnik and V. A. Khominskii, Electrophysical Destruction of Rocks (Leningr. Gorn. Inst., Leningrad, 1984), pp. 65–85.

    Google Scholar 

  68. S. S. Krasnovskii and A. P. Obraztsov, in Proc. All- Union Conf. “Physics of Rocks and Rock Processes,” Moscow, Russia, 1971, p. 174.

    Google Scholar 

  69. S. S. Krasnovskii, Nauchn. Soobshch.—Inst. Gorn. Dela im. A. A. Skochinskogo, 101 (1989).

    Google Scholar 

  70. S. S. Krasnovskii, E. F. Epshtein, and A. P. Obraztsov, Nauchn. Soobshch.—Inst. Gorn. Dela im. A. A. Skochinskogo, No. 54, 96 (1968).

    Google Scholar 

  71. S. S. Krasnovskii, E. I. Arsh, and M. F. Drukovannyi, Izv. Dnepropetr. Gorn. Inst. 40, 124 (1961).

    Google Scholar 

  72. S. S. Krasnovskii and Yu. N. Zakharov, in Proc. Conf. “Miner’s Week,” Moscow, Russia, 1994 (Mosk. Gos. Gorn. Univ., Moscow, 1994), p. 193.

    Google Scholar 

  73. V. S. Litvinenko, E. I. Boguslavskii, and P. V. Korzhavykh, Zap. Gorn. Inst. 195, 115 (2012).

    Google Scholar 

  74. A. D. Zavyalov, Phys. Solid State 47, 1034 (2005).

    Article  ADS  Google Scholar 

  75. V. N. Oparin, V. I. Vostrikov, O. M. Usol’tseva, P. A. Tsoi, and V. N. Semenov, J. Min. Sci. 51, 624 (2015).

    Article  Google Scholar 

  76. G. A. Sobolev, V. I. Vettegren’, V. V. Ruzhich, S.M. Kireenkova, A. I. Smul’skaya, R. I. Mamalimov, and V. B. Kulik, Geofiz. Issled. 16 (4), 5 (2015).

    Google Scholar 

  77. N. N. Mel’nikov and A. A. Kozyrev, Gorn. Inf.-Anal. Byull., No. S56, 7 (2015).

    Google Scholar 

  78. V. V. Adushkin, G. G. Kocharyan, and A. A. Ostapchuk, Dokl. Earth Sci. 467, 275 (2016).

    Article  ADS  Google Scholar 

  79. V. I. Vettegren’, V. S. Kuksenko, and I. P. Shcherbakov, Tech. Phys. 56, 577 (2011).

    Article  Google Scholar 

  80. V. I. Vettegren, V. S. Kuksenko, and I. P. Shcherbakov, Phys. Solid State 54, 1425 (2012).

    Article  ADS  Google Scholar 

  81. V. V. Nosov, Russ. J. Nondestr. Test. 52, 386 (2016).

    Article  Google Scholar 

  82. V. S. Kuksenko, A. I. Lyashkov, and V. N. Savel’ev, Defektoskopiya, No. 6, 57 (1980).

    Google Scholar 

  83. A. I. Lyashkov, I. E. Inzhevatkin, and V. N. Savel’ev, Defektoskopiya, No. 6, 98 (1980).

    Google Scholar 

  84. V. V. Nosov, Russ. J. Nondestr. Test. 50, 719 (2014).

    Article  Google Scholar 

  85. V. V. Nosov and I. N. Burakov, Russ. J. Nondestr. Test. 40, 113 (2004).

    Article  Google Scholar 

  86. V. V. Nosov and G. S. Elchaninov, Russ. J. Nondestr. Test. 47, 824 (2011).

    Article  Google Scholar 

  87. V. V. Nosov and V. G. Lavrin, Russ. J. Nondestr. Test. 48, 159 (2012).

    Article  Google Scholar 

  88. V. V. Nosov and T. N. Lachova, Russ. J. Nondestr. Test. 48, 75 (2012).

    Article  Google Scholar 

  89. S. Stanchits, J. Burghardt, and A. Surdi, Rock Mech. Rock Eng. 48, 2513 (2015).

    Article  ADS  Google Scholar 

  90. G. Lacidogna, A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, and A. Agosto, Strain 47 (S2), 144 (2011).

    Article  Google Scholar 

  91. V. V. Nosov and A. I. Potapov, Russ. J. Nondestr. Test. 51, 50 (2015).

    Article  Google Scholar 

  92. D. A. Lockner, J. D. Byerlee, V. S. Kuksenko, and A. V. Ponomarev, Pure Appl. Geophys. 124, 601 (1986).

    Article  ADS  Google Scholar 

  93. D. A. Lockner and S. A. Stanchits, J. Geophys. Res.: Solid Earth 107 (B12), 2353 (2002).

    Article  ADS  Google Scholar 

  94. S. P. Soloviev and A. A. Spivak, Izv., Phys. Solid Earth 45, 347 (2009).

    Article  ADS  Google Scholar 

  95. Kh. F. Makhmudov, Tech. Phys. 56, 72 (2011).

    Article  Google Scholar 

  96. V. S. Kuksenko and Kh. F. Makhmudov, Tech. Phys. Lett. 30, 612 (2004).

    Article  ADS  Google Scholar 

  97. Kh. F. Makhmudov, Sovrem. Naukoemkie Tekhnol., No. 12-3, 426 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. F. Makhmudov.

Additional information

Original Russian Text © M.G. Menzhulin, Kh.F. Makhmudov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 7, pp. 1040–1048.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menzhulin, M.G., Makhmudov, K.F. Thermokinetic model of fracture of heterogeneous materials and peculiarities of its numerical realization under the action of RF electromagnetic fields. Tech. Phys. 62, 1056–1064 (2017). https://doi.org/10.1134/S1063784217070131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217070131

Navigation