Skip to main content
Log in

Application of Microwaves for Obtaining Ground Solid Fuel

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper gives an analytical overview of theoretical and experimental data on the microwave grinding of coal. As a result of the work done, we have substantiated the urgency of microwave treatment (MWT) of coal for obtaining ground coal, which in turn has a positive effect on the operation efficiency of TPPs. Moreover, we have considered the positive effects of microwave grinding as applied to coke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Kapitsa, Experiment, Theory, Practice [in Russian], Nauka, Moscow (1977).

  2. D. H. Meadows, D. L. Meadows, J. Rangers, and W. W. Behrens, The Limits to Growths, University Books, New York (1972), pp. 70−77.

  3. A. É. Kantorovich, N. L. Dobretsov, N. P. Laverov, A. G. Korzhubaev, and V. R. Livshits, The energy strategy of Russia in the XXI century, Vestn. Ross. Akad. Nauk, 69, No. 9, 771−789 (1999).

    Google Scholar 

  4. M. Rhodes, Introduction to Particle Technology, 2nd edn., John Wiley & Sons Ltd., Chichester, England (2008).

    Book  Google Scholar 

  5. S. G. Gagarin, Upgrading the effi ciency of microwave crushing of coal for TPPs Koks Khim., No. 7, 43−45 (2008).

  6. A. V. Luikov, Theory of Drying [in Russian], Énergiya, Moscow (1968).

  7. Singh Kedar Prasad and Kakati Mohan Chandra, Effect of atomic (O/C) ratio and helium density on microwave desulphurization efficiencies and correlations for their predictions, Res. Ind., 39, No. 3, 198−201 (1994).

  8. O. S. Danilov, V. A. Mikheev, and T. V. Moskalenko, Microwave treatment of solid combustible fossils, Gorn. Inform.-Anal. Byul., No. 3, 203−208 (2010).

  9. O. S. Danilov, V. A. Mikheev, and T. V. Moskalenko, Infl uence of electromagnetic microwave radiation on solid combustible fossils, Izv. Samarsk. Nauch. Tsentra Ross. Akad. Nauk, 13, No. 1(5), 1264−1267 (2011).

  10. S. Marland, B. Han, A. Merchant, and N. Rowson, The effect of microwave radiation on coal grindability, Fuel, 79, No. 11, 1283–1288 (2000).

  11. S. Marland, A. Merchant, and N. Rowson, Dielectric properties of coal, Fuel, 80, No. 13, 1839–1849 (2001).

  12. H. Kumar, E. Lester, S. Kingman, R. Bourne, C. Avila, A. Jones, J. Robinson, P. M. Halleck, and J. P. Mathews, Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy, Int. J. Coal Geol., 88, No. 1, 75–82 (2011).

    Article  Google Scholar 

  13. O. S. Danilov, V. A. Mikheev, and T. V. Moskalenko, Estimation of the effect of electromagnetic microwave radiation on the microporous structure of brown coal, Gorn. Inform.-Analit. Byul., Region. Prilozh., Dal′nii Vostok-1, Issue 4, 285−289 (2009).

  14. Lichao Ge, Yanwei Zhang, Zhihua Wang, Junhu Zhou, and Kefa Cen, Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals, Energy Convers. Manage., 71, 84–91 (2013).

  15. P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Pores in a Solid Body [in Russian], Énergoatomizdat, Moscow (1990).

  16. E. Lester and S. Kingman, The effect of microwave preheating on five different coals, Fuel, 83, Nos. 14−15, 1941–1947 (2004).

  17. S. S. Krasnovskii, Controlling the process of fracture of rocks in intense electromagnetic fields, Gorn. Inform.-Analit. Byul., No. 3, 163−166 (1999).

  18. A. P. Obraztsov, A. P. Uvarov, and A. G. Maksimenko, Investigation of the volume fracture of rocks in strong microwave fields, in: Thermomechanical Methods of Destruction of Rocks [in Russian], Naukova Dumka, Kiev (1976), pp. 149–150.

  19. S. S. Krasnovskii, Investigation of the Interaction of HF and SHF Electromagnetic Fields with Rocks for Developing Methods and Means of Their Destruction, Ext. Abstr. of Candidate′s Dissertation (in Engineering), Moscow (1999).

  20. S. É. Pashchenko, A Method of microwave-Gradient Activation of Coal Fuel, RF Patent No. 2458107, published 10.18.2012, Byul. No. 22.

  21. A. V. Dolgolaptev, Yu. D. Voronovskii, S. S. Krasnovskii, V. F. Nistratov, and A. P. Obraztsov, Change in the strength properties of ores in high-intensity alternating electromagnetic fields, Gorn. Inform.-Anal. Byul., 10, 99−101 (2000).

    Google Scholar 

  22. S. U. Kingman, Creation of High-Intensity Electromagnetic Radiation and Its Use for Treating Materials, e.g., Lowering the Strength of Multiphase Materials, RF Patent No. 2318028, published 01.04.2003.

  23. Mohindar S. Seehra and Vivek Singh, Use of Microwave Heating in Coal Research and in Materials Synthesis, Department of Physics, West Virginia University, United States (2011), pp. 164−168.

  24. S. É. Pashchenko, S. V. Alekseenko, S. S. Pashchenko, V. V. Kolyada, and V. V. Salomatov, A Method of Microwave-Gradient Activation of Coal Fuel with the Use of a Protective Film, RF Patent No. 2514826, published 01.10.2012.

  25. A. G. Starovoit, E. I. Malyi, and M. S. Chemerinskii, The process of microwave action on low-backing gas coals, Koks Khim., No. 9, 2−4 (2010).

  26. A. G. Starovoit, E. I. Malyi, and M. S. Chemerinskii, Effect of the content of microwave thermally treated gas coal in the charge on the quality of coke, Koks Khim., No. 12, 8−12 (2012).

  27. E. Lester, S. Kingman, C. Dodds, and J. Patrick, The potential for rapid coke making using microwave energy, Fuel, 85, Nos. 14–15, 2057–2063 (2006).

  28. E. Ruisànchez, A. Arenillas, E. J. Juàrez-Pèrez, and J. A. Menèndez, Pulses of microwave radiation to improve coke grindability, Fuel, 102, 65–71 (2012).

    Article  Google Scholar 

  29. J. A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernàndez, L. Zubizarreta, E. G. Calvo, and J. M. Bermàdez, Microwave heating processes involving carbon materials, Fuel Process. Technol., 91, 1–8 (2010).

    Article  Google Scholar 

  30. J. A. Menéndez, E. J. Juarez-Perez, E. Ruisànchez, J. M. Bermàdez, and A. Arenillas, Ball lightning plasma and plasma arc formation during the microwave heating of carbons, Carbon, 49, 346–349 (2010).

    Article  Google Scholar 

  31. P. M. Kanilo, V. I. Kazantsev, N. I. Rasyuk, K. Schünemann, and D. M. Varviv, Microwave plasma combustion of coal, Fuel, 82, No. 2, 187−193 (2003).

  32. D. M. Varviv, V. I. Kazantsev, P. M. Kanilo, N. I. Rasyuk, K. Schünemann, and S. V. Crytsayenko, Microwave plasma technology of pulverized coal combustion. Telecommun. Radio Eng., 61, No. 8, 650−662 (2004).

  33. D. M. Varviv, P. M. Kanilo, N. I. Rasyuk, A. V. Tymchik, V. N. Bormotov, K. V. Kostenko, A. V. Shevchenko, G. V. Solov′ev, L. V. Shevtsova, S. A. Ermak, and K. Schünemann, The process of burning coal dust in the experimental microwave-plasma burner, Prom. Teplotekh., 29, No. 2, 47−54 (2007).

  34. R. M. Hardgrove, Grindability of coal, Trans. Am. Soc. Mech. Eng., 54, 37–46 (1932).

  35. E. E. Sergo, Crushing, Grinding, and Screening of Minerals, Textbook for universities [in Russian], Nedra, Moscow (1985).

  36. L. G. Austin, P. Bagga, and M. Celik, Breakage properties of some materials in a laboratory ball mill, Powder Technol.,28, 235–241 (1981).

  37. S. W. Kingman and N. A. Rowson, Microwave treatment of minerals — a review, Miner. Eng., 11, No. 11, 1081−1088 (1998).

    Article  Google Scholar 

  38. M. S. Delibalta and O. Y. Toraman, The effect of microwave energy on grindability of a Turkish high-ash coal, Energy Sci. Technol., 3, No. 2, 46−49 (2012).

    Google Scholar 

  39. B. K. Sahoo, S. De, and B. C. Meikap, Improvement of grinding characteristics of Indian coal by microwave pretreatment, Fuel Process. Technol., 92, 1920–1928 (2011).

    Article  Google Scholar 

  40. B. C. Meikap, N. K. Purohit, and V. Mahadevan, Effect of microwave pretreatment of coal for improvement of rheological characteristics of coal–water slurries, J. Colloid Interface Sci., 281, No. 1, 225−235 (2005).

    Article  Google Scholar 

  41. B. K. Sahoo, S. De, M. Carsky, and B. C. Meikap, Enhancement of rheological behavior of Indian high ash coal–water suspension by using microwave pre-treatment, Ind. Eng. Chem. Res., 49, 3015–3021 (2010).

    Article  Google Scholar 

  42. S. Kingman, Microwave Pre-Treatment of Coal and Coal Blends to Improve Milling Performance, BCURA Project B76, Final Report, January 2006.

  43. S. Kingman, E. Lester, T. Wu, J. Matthews, and S. Bradshaw, The potential of coal microwaving in power stations to improve grindability, in: Proc. 2007 Conf. on Coal Science and Technology, Nottingham Fuel and Research Centre (NFRC), Nottingham, UK (2007). NFRC CD-ROM. Pp. 3−13.

  44. M. L. Fuks and L. A. Fuks, The problem of unification of coal-winning machines, Vestn. Kuzbassk. Gos. Tekh. Univ., No. 6, 57−75 (2010).

  45. A. N. Didenko, Microwave Power Engineering: Theory and Practice [in Russian], Nauka, Moscow (2003).

  46. A. N. Didenko, A Method for Grinding Fossil Coal Fuel, RF Patent No. 2226208, published 20.12.2003.

  47. A. N. Didenko, B. V. Zverev, A. V. Prokopenko, and A. Yu. Shchukin, Microwave technology of grinding and dispersing black coals and kimberlites, Scientific Session of MIFI-2006: Physical and Technical Problems of Nontraditional Power Engineering and High-Power Pulse Electrophysics. Physical and Technical Problems of Nuclear Power Engineering, 8, 34−3 5 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vl. V. Salomatov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 1, pp. 49–62, January–February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomatov, V.V., Pashchenko, S.É., Sladkov, S.O. et al. Application of Microwaves for Obtaining Ground Solid Fuel. J Eng Phys Thermophy 89, 50–65 (2016). https://doi.org/10.1007/s10891-016-1352-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1352-5

Keywords

Navigation