Skip to main content
Log in

Elastoplastic properties of microand submicrocrystalline metals and alloys

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The problem of application of physical acoustic methods to studying the mechanisms that control plastic deformation and fracture is considered using micro- and submicrocrystalline materials (Be, Al, Ti, Al–Sc alloy, Cu–Nb laminated material) as examples. The influence of grain boundaries on the acoustic (elastic, inelastic) properties of polycrystalline micro- and nanostructured metallic materials is analyzed. Experimental results are presented for a wide oscillating-stress amplitude range, from 0.2 to 50 MPa. The experimental data are discussed in terms of the theoretical concepts of oscillatory dislocation mobility, which depends on both the short-range stress fields around point defects and the long-range fields of internal stresses. It is shown that various types of discontinuities, such as pores and microcracks, noticeably influence the acoustic properties. The aspects of the relation, similarity, and difference between acoustic and mechanical (plasticity, strength) tests of polycrystalline materials with micro- and nanosized structural elements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter, Nanostruct. Mater. 1, 1 1992.

    Article  Google Scholar 

  2. R. A. Andrievskii and A. M. Glezer, Phys. Usp. 52, 315 2009.

    Article  ADS  Google Scholar 

  3. Y. Estrin and A. Vinogradov, Acta Mater. 61, 7872 2013.

    Article  Google Scholar 

  4. G. A. Malygin, Phys. Usp. 54, 1091 2011.

    Article  ADS  Google Scholar 

  5. R. A. Andrievskii, Phys. Usp. 57, 945 2014.

    Article  ADS  Google Scholar 

  6. G. I. Taylor, Proc. R. Soc. London, Ser. A 145, 362 1934.

    Article  ADS  MATH  Google Scholar 

  7. E. Orowan, Z. Phys. 89, 634 1934.

    Article  ADS  Google Scholar 

  8. M. Polyani, Z. Phys. 89, 660 1934.

    Article  ADS  Google Scholar 

  9. T. A. Read, Phys. Rev. 58, 371 1940.

    Article  ADS  Google Scholar 

  10. G. S. Baker, J. Appl. Phys. 33, 1730 1962.

    Article  ADS  Google Scholar 

  11. B. K. Kardashev, Sov. Phys. Solid State 19, 1459 1977.

    Google Scholar 

  12. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Inelasticity of Crystals (Nauka, Moscow, 1985).

    Google Scholar 

  13. A. B. Lebedev and S. B. Kustov, Sov. Phys. Solid State 29, 915 1987.

    Google Scholar 

  14. A. B. Lebedev, J. Phys. IV (France) Colloq. C8 6, 255 1996.

    Google Scholar 

  15. B. K. Kardashev, A. S. Nefagin, G. N. Ermolaev, M. P. Leont’eva-Smirnova, M. M. Potapenko, and V. M. Chernov, Tech. Phys. Lett. 32, 799 2006.

    Article  ADS  Google Scholar 

  16. B. K. Kardashev and V. M. Chernov, Phys. Solid State 50, 854 2008.

    Article  ADS  Google Scholar 

  17. B. K. Kardashev and V. M. Chernov, Mater. Sci. Eng., A 521–522, 329 2009.

    Article  Google Scholar 

  18. B. K. Kardashev and I. B. Kupriyanov, Phys. Solid State 53, 2480 2011.

    Article  ADS  Google Scholar 

  19. B. K. Kardashev and I. B. Kupriyanov, Solid State Phenom. 184, 257 2012.

    Article  Google Scholar 

  20. J. Marx, Rev. Sci. Instrum. 22, 503 1951.

    Article  ADS  Google Scholar 

  21. B. K. Kardashev, Kristallografiya 54, 1074 2009.

    Google Scholar 

  22. V. L. Indenbom and V. M. Chernov, Elastic Strain Fields and Dislocation Mobility, Ed. by V. L. Indenbom and J. Lothe (North-Holland–Elsevier, Amsterdam, 1992), pp. 517–570.

  23. G. Gremaud, Mater. Sci. Forum 366–368, 178 2001.

    Article  Google Scholar 

  24. R. W. K. Honeycombe, The Plastic Deformation of Metals (Arnold, London, 1968).

    Google Scholar 

  25. R. Z. Valiev and G. V. Aleksandrov, Nanostructured Metals Produced by Severe Plastic Deforming (Logos, Moscow, 2000).

    Google Scholar 

  26. V. I. Betekhtin, A. G. Kadomtsev, and B. K. Kardashev, Phys. Solid State 48, 1506 2006.

    Article  ADS  Google Scholar 

  27. V. I. Betekhtin, B. K. Kardashev, and M. V. Narykova, Nauch.-Tekh. Vedomosti S-Peterb. Univ., Ser. Fiz. Mat., No. 4 (109), 104 2010.

    Google Scholar 

  28. V. I. Betekhtin, Yu. R. Kolobov, M. V. Narykova, B. K. Kardashev, E. V. Golosov, and A. G. Kadomtsev, Tech. Phys. 56, 1599 2011.

    Article  Google Scholar 

  29. V. A. Moskalenko, V. I. Betekhtin, B. K. Kardashev, A. G. Kadomtsev, A. R. Smirnov, R. V. Smolyanets, and M. V. Narykova, Phys. Solid State 56, 1590 2014.

    Article  ADS  Google Scholar 

  30. V. I. Betekhtin, J. Dvorak, A. G. Kadomtsev, B. K. Kardashev, M. V. Narykova, G. K. Raab, V. Sklenicka, and S. N. Faizova, Tech. Phys. Lett. 41, 80 2015.

    Article  ADS  Google Scholar 

  31. V. I. Betekhtin, Yu. R. Kolobov, V. Sklenicka, A. G. Kadomtsev, M. V. Narykova, J. Dvorak, E. V. Golosov, B. K. Kardashev, and I. N. Kuz’menko, Tech. Phys. 60, 66 2015.

    Article  Google Scholar 

  32. V. I. Betekhtin, Yu. R. Kolobov, O. A. Golosova, B. K. Kardashev, A. G. Kadomtsev, M. V. Narykova, M. B. Ivanov, and T. N. Vershinina, Tech. Phys. 58, 1432 2013.

    Article  Google Scholar 

  33. V. I. Betekhtin, V. Sklenicka, I. Saxl, B. K. Kardashev, A. G. Kadomtsev, and M. V. Narykova, Phys. Solid State 52, 1629 2010.

    Article  ADS  Google Scholar 

  34. V. I. Betekhtin, Yu. R. Kolobov, B. K. Kardashev, E. V. Golosov, M. V. Narykova, A. G. Kadomtsev, D. N. Klimenko, and M. I. Karpov, Tech. Phys. Lett. 38, 144 2012.

    Article  ADS  Google Scholar 

  35. V. Sklenicka, J. Dvorak, M. Kvapilova, M. Svoboda, P. Kral, I. Saxl, and Z. Holita, Mater. Sci. Forum 539–543, 2904 2007.

    Article  Google Scholar 

  36. V. I. Betekhtin, A. G. Kadomtsev, V. Sklenicka, and I. Saxl, Phys. Solid State 49, 1874 2007.

    Article  ADS  Google Scholar 

  37. J. Dvorak, V. Sklenicka, V. I. Betekhtin, A. G. Kadomtcev, P. Kral, M. Kvapilova, and M. Svoboda, Mater. Sci. Eng., A 584, 103 2013.

    Article  Google Scholar 

  38. R. Lapovok, D. Tomys, J. Mang, Y. Estrin, and T. C. Lowe, Acta Mater. 57, 2009 2009.

    Article  Google Scholar 

  39. P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Pores in Solid (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  40. R. Chaim and M. Hefetz, J. Mater. Sci. 39, 3057 2004.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Kardashev.

Additional information

Original Russian Text © B.K. Kardashev, V.I. Betekhtin, M.V. Narykova, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 60, No. 12, pp. 94–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardashev, B.K., Betekhtin, V.I. & Narykova, M.V. Elastoplastic properties of microand submicrocrystalline metals and alloys. Tech. Phys. 60, 1829–1841 (2015). https://doi.org/10.1134/S1063784215120063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215120063

Keywords

Navigation