Skip to main content
Log in

Lithium electron work function: State of the art

  • Physical Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Main findings on the lithium electron work function in ultrahigh vacuum, including the results of the authors, are reviewed. The data were obtained by the Fowler absolute method on polycrystalline lithium samples with various purity grades. It turns out that published data for the emissivity and work function of the lithium electron are scarce. It is shown that when the purity of the initial material (LE-1 lithium) grows by an order of magnitude, the electron work function rises by 7–10% and its temperature coefficient decreases by six times in absolute value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Drits and L. L. Zusman, Alloys of Alkali and Alkali-Earth Metals (Metallurgiya, Moscow, 1986).

    Google Scholar 

  2. V. N. Mikhailov, V. A. Evtikhin, I. E. Lyublinskii, A. V. Vertkov, and A. N. Chumanov, L ithium for Fusion Reactors and Space Nuclear Power Systems of the 21st Century (Energoatomizdat, Moscow, 1999).

    Google Scholar 

  3. B. B. Alchagirov and Kh. B. Khokonov, “Alkali metals and related alloys-advanced materials of modern technology and energetics,” in Physics and Chemistry of Advanced Materials: Collection of Scientific Works (KBGU, Nal’chik, 1998), pp. 40–44.

    Google Scholar 

  4. V. I. Subbotin, M. N. Arnol’dov, and M. N. Ivanovskii, Lithium (IzdAT, Moscow, 1999).

    Google Scholar 

  5. B. K. Petrin, “Chemical sources of current with high energy capacitance,” Itogi Nauki Tekhn., Ser.: Generatory Pryam. Preobraz. Tepl. Khim. Energ. Elektr. 8, (1986).

  6. B. B. Alchagirov, R. Kh. Arkhestov, and F. F. Dyshekova, Tech. Phys. 57, 1541 (2012).

    Article  Google Scholar 

  7. V. S. Fomenko, Emission Properties of Materials: A Handbook (Naukova Dumka, Kiev, 1981).

    Google Scholar 

  8. G. G. Bondarenko and A. V. Shishkov, Poverkhnost’, No. 9, 35 (1995).

    Google Scholar 

  9. B. B. Alchagirov, V. B. Lazarev, and Kh. B. Khokonov, “Electronic work function of alkali metals and related alloys,” Obz. Teplofiz. Svoistvam Veshchestv, No. 5 (79), 4 (90) (1989).

    Google Scholar 

  10. J. Holz and F. K. Schulte, Sol. Surf. Phys. 85, 221 (1979).

    Google Scholar 

  11. T. Hua, in Proceedings of the 1st International Fusion Materials Irradiation Facility (IFMIF) Technical Workshops on Li-Target System, 1995, pp. 219–228.

  12. E. M. Savitskii, I. V. Burov, S. V. Pirogova, and L. N. Litvak, Electrical and Emissional Properties of Alloys (Nauka, Moscow, 1978).

    Google Scholar 

  13. J. C. Riviere, in Solid State Surface Science, Ed. by Mino Green (Dekker, New York, 1969).

  14. S. Halas, Mater. Sci. (Poland) 24, 951 (2006).

    Google Scholar 

  15. L. N. Dobretsov and M. V. Gomoyunova, Emission Electronics (IPST, Jerusalem, 1971).

    Google Scholar 

  16. Reference Book of a Chemist (Goskhimizdat, Leningrad, 1951), Vol. 1, p. 292.

  17. H. Bogdanow and K. F. Wojciechowski, J. Phys. D: Appl. Phys. 29, 1310 (1996).

    Article  ADS  Google Scholar 

  18. P. A. Anderson, Phys. Rev. 75, 1205 (1949).

    Article  ADS  Google Scholar 

  19. P. A. Anderson, Phys. Rev. 47, 958 (1935).

    Article  ADS  Google Scholar 

  20. B. M. Tsarev, Contact Potential Difference (Gostekhizdat, Moscow, 1955).

    Google Scholar 

  21. Ya. P. Zingerman, V. A. Ishchuk, and V. A. Morozovskii, Sov. Phys. Solid State 2, 2276 (1960).

    Google Scholar 

  22. S. V. Ermanov, E. A. Tishin, and B. M. Tsarev, Radiotekh. Elektron. (Moscow) 12, 1325 (1967).

    Google Scholar 

  23. V. M. Gavrilyuk and V. K. Medvedev, Sov. Phys. Solid State 8, 1439 (1966).

    Google Scholar 

  24. V. N. Lyasnikov and A. N. Arsen’eva-Geil’, Uch. Zap. — Leningr. Gos. Univ. im A. A. Zhdanova, No. 354, Ser. Fiz. Nauki, No. 16 (1970), No. 3, p. 30.

    Google Scholar 

  25. A. L. Hughes and L. A. DuBridge, Photoelectric Phenomena (McGraw-Hill, New York, 1932), pp. 65–66.

    Google Scholar 

  26. R. Schulze, Z. Phys. 92, 212 (1934).

    Article  ADS  Google Scholar 

  27. O. Klein and E. Lange, Z. Elektrochem 44, 542 (1938).

    Google Scholar 

  28. A. P. Ovchinnikov and B. M. Tsarev, Sov. Phys. Solid State 9, 2766 (1968).

    Google Scholar 

  29. P. Rawlings and H. Reiss, Surf. Sci. 36, 580 (1973).

    Article  ADS  Google Scholar 

  30. B. B. Alchagirov, G. N. Shnitko, O. I. Kurshev, and R. Kh. Arkhestov, “Temperature dependence of electronic work function of technical-purity-grade solid lithium,” Physics and Technology of Surface (KBGU, Nal’chik, 1990), pp. 117–121.

    Google Scholar 

  31. K. Wong, G. Tikhonov, and V. V. Kresin, Phys. Rev. B 66, 125401/1 (2002).

    Article  ADS  Google Scholar 

  32. B. B. Alchagirov, R. Kh. Arkhestov, F. F. Dyshekova, T. M. Taova, T. A. Sizhazhev, and Z. A. Kokov, Vestn. Kabard.-Balkarsk. Gos. Univ., Ser.: Fiz. Nauki, No. 11, 3 (2008).

    Google Scholar 

  33. B. B. Alchagirov, L. Kh. Afaunova, F. F. Dyshekova, T. M. Taova, R. Kh. Arkhestov, A. G. Mozgovoi, and Z. A. Kokov, Prib. Tekh. Eksp. No. 2, 148 (2009).

    Google Scholar 

  34. B. B. Alchagirov, R. Kh. Arkhestov, B. S. Karamurzov, T. M. Taova, and Kh. B. Khokonov, in Proceedings of the 6th International Conference on High Temperature Capillarity (HTC-2009), Athens, Greece, 2009, p. 112.

  35. B. B. Alchagirov, L. Kh. Afaunova, R. Kh. Arkhestov, and Z. A. Kegadueva, Dokl. Adyg. Mezhdunar. Akad. Nauk 11(2), 79 (2009).

    Google Scholar 

  36. B. B. Alchagirov, Tech. Phys. 46, 119 (2001).

    Article  Google Scholar 

  37. B. B. Alchagirov, “Surface tension of alkali metals and related alloys,” Obz. Teplofiz. Svoistvam Veshchestv, No. 3 (89), 4 (90) (1991).

    Google Scholar 

  38. S. I. Popel’, Surface Phenomena in Melts (Metallurgiya, Moscow, 1994), p. 81.

    Google Scholar 

  39. B. B. Alchagirov, Zh. Fiz. Khim. 64, 2983 (1990).

    Google Scholar 

  40. Yu. I. Malov and V. B. Lazarev, Dokl. Akad. Nauk SSSR 161, 875 (1965).

    Google Scholar 

  41. R. H. Fawler, Phys. Rev. 38, 45 (1931).

    Article  ADS  Google Scholar 

  42. B. B. Alchagirov, R. Kh. Arkhestov, and Kh. B. Khokonov, Dokl. Akad. Nauk SSSR 326, 121 (1992).

    Google Scholar 

  43. B. B. Alchagirov, R. Kh. Arkhestov, and Kh. B. Khokonov, Zh. Fiz. Khim. 67, 1892 (1993).

    Google Scholar 

  44. Kh. Khokonov and B. B. Alchagirov, Fiz. Met. Metalloved. 25, 185 (1968).

    Google Scholar 

  45. S. N. Zadumkin and Kh. B. Khokonov, Dependence of Electronic Work Function on Particle Size. Growth and Defects of Metal Crystals (Naukova Dumka, Kiev, 1966), pp. 304–306.

    Google Scholar 

  46. Yu. I. Petrov, Physics of Small Particles (Nauka, Moscow, 1982).

    Google Scholar 

  47. A. P. Maksimenko and V. I. Tverdokhlebov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 4 (1964).

    Google Scholar 

  48. K. E. Shuler and J. Weber, J. Chem. Phys. 22, 491 (1954).

    Article  ADS  Google Scholar 

  49. L. A. Rudnitskii, Dokl. Akad. Nauk SSSR 246, 1106 (1979).

    Google Scholar 

  50. M. S. Sodha and P. K. Dubey, J. Phys.: Appl. Phys. 3, 139 (1970).

    ADS  Google Scholar 

  51. R. Bastasz, in Proceedings of the 3rd International Symposium on Material Chemistry in Nuclear Environment, Tsukuba, 2002 (Japan Atomic Energy Research Institute, 2003), pp. 12–18.

    Google Scholar 

  52. R. Bastasz and J. A. Whaley, Fusion Eng. Des. 72, 111 (2004).

    Article  Google Scholar 

  53. B. B. Alchagirov, B. S. Karamurzov, and Kh. B. Khokonov, Modern Methods of Surface Research (Kabard.— Balkarsk. Gos. Univ., Nal’chik, 1987).

    Google Scholar 

  54. GOST 8774-75: Lithium. Specification (Izd. Standartov, Moscow, 1987).

  55. G. L. Powell, R. E. Clausing, and G. E. McGuire, Surf. Sci. Lett. 49, 310 (1975).

    Article  ADS  Google Scholar 

  56. S. N. Zadumkin, I. G. Shebzukhova, and B. B. Alchagirov, Fiz. Met. Metalloved. 30, 1313 (1970).

    Google Scholar 

  57. A. A. Kiejna, J. Phys. D: Solid State Phys. 15, 4717 (1982).

    ADS  Google Scholar 

  58. R. M. Digilov, V. A. Sozaev, and Kh. B. Khokonov, Poverkhnost: Fiz. Khim. Mekh., No. 6, 13 (1987).

    Google Scholar 

  59. Durakiewicz, A. J. Arko, J. J. Joyce, D. P. Moore, and S. Halas, Surf. Sci. 478, 72 (2001).

    Article  ADS  Google Scholar 

  60. H. B. Michaelson, J. Appl. Phys. 21, 536 (1950).

    Article  ADS  Google Scholar 

  61. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    Article  ADS  Google Scholar 

  62. E. A. Trendelenburg, Ultrahochvakuum (Braun, Karlsruhe, 1963).

    Google Scholar 

  63. G. G. Devyatykh, Yu. A. Karpov, and L. I. Osipova, Exhibition-Collection of High Purity Substances, Ed. by G. G. Devyatykh (Nauka, Moscow, 2003).

  64. D. P. Woodruff and T. A. Delchar, Modrn Techniques of Surface Science (Cambridge Univ., Cambridge, 1986).

    Google Scholar 

  65. I. Langmuir, Trans. Am. Electrochem. Soc. 29, 125 (1916).

    Google Scholar 

  66. S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices (Wiley, New York, 2007).

    Google Scholar 

  67. B. B. Alchagirov and Kh. B. Khokonov, Emission Properties of Metals and Alloys (Kabard.-Balkarsk. Gos. Univ., Nal’chik, 1984).

    Google Scholar 

  68. Kh. I. Ibragimov and V. A. Korol’kov, Electron Work Function in Physical Chemical Research (Intermet Inzhiniring, Moscow, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Alchagirov.

Additional information

Original Russian Text © B.B. Alchagirov, L.Kh. Afaunova, F.F. Dyshekova, R.Kh. Arkhestov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 2, pp. 135–143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alchagirov, B.B., Afaunova, L.K., Dyshekova, F.F. et al. Lithium electron work function: State of the art. Tech. Phys. 60, 292–299 (2015). https://doi.org/10.1134/S1063784215020024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215020024

Keywords

Navigation