Skip to main content
Log in

Low-temperature nanodoping of protonated LiNbO3 crystals by univalent ions

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In the nanocomposite model developed here, crystals are treated as subordinate aggregate of pro- ton-selected structural elements, their blocks, and proton-containing quantum sublattices with preferred transport effects separating them. The formation of stratified reversible hexagonal structures is accompanied with protonation and formation of a dense network of H-bonds ensuring the nanocomposite properties. Nanodoping with H+ ions occurs during processing of crystals and glasses in melts as well as in aqueous solutions of Ag, Tl, Rb, and Cs salts. The isotope exchange H+ ↔ D+ and ion exchange H+ ↔ M+ lead to nanodoping of protonated materials with D+ and M+ ions. This is manifested especially clearly in Li-depleted nonequilibrium LiNbO3 and LiTaO3 crystals. Low-temperature proton-ion nanodoping over superlattices is a basically new approach to analysis of the structure and properties of extremely nonequilibrium materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kolesov, A. E. Semenov, and E. V. Cherkasov, Opt. Spectrosc. 50, 551 (1981).

    ADS  Google Scholar 

  2. V. I. Vereshchagin, S. N. Sutulin, and A. N. Sergeev, in Proceedings of the 6th All-Union Conference on Dielectric Materials, Tomsk, 1988, Vol. 5, pp. 163–164.

  3. O. G. Pavlov, I. I. Rodichev, and O. L. Khasanov, in Proceedings of the 4th All-Union Symposium on Properties of Small Particles and Island Metalic Films, Kiev, 1985, pp. 7–9.

  4. A. Loni, R. W. Keys, R. M. De La Rue, et al., IEE Proc.-J: Optoelectron. 6, 297 (1989).

    Google Scholar 

  5. A. Loni, R. M. De La Rue, and I. M. Winfield, J. Appl. Phys. 61, 64 (1987).

    Article  ADS  Google Scholar 

  6. R. Gonzalez, Y. Clen, and N. M. Abraham, Phys. Rev. B 37, 1431 (1988).

    Article  Google Scholar 

  7. A. Forster, S. Kapphan, and M. O. Wohlecke, Phys. Status Solidi B 143, 755 (1987).

    Article  ADS  Google Scholar 

  8. A. N. Sergeev, G. P. Shveikin, S. N. Sutulin, et al., Obz. Electron. Tekh., Ser. 6: Mater., No. 3 (1989).

    Google Scholar 

  9. A. N. Sergeev, V. G. Bamburov, and G. P. Shveikin, Low-Temperature Proton Modification of Oxides in Thin Layer (Ural’sk. Otd. Akad. Nauk SSSR, Sverdlovsk, 1989).

    Google Scholar 

  10. I. B. Bates, I. C. Wong, and R. A. Perkins, Phys. Rev. B 319, 4130 (1979).

    Article  ADS  Google Scholar 

  11. I. B. Bates and R. A. Perkins, Phys. Rev. B 16, 3713 (1977).

    Article  ADS  Google Scholar 

  12. Y. Chen, Phys. Rev. B: Condens. Matter. 35, 8202 (1987).

    Article  ADS  Google Scholar 

  13. I. L. Park and R. Jonsoles, J. Mater. Res. 4, 224 (1989).

    Article  ADS  Google Scholar 

  14. J. L. Jackel and C. E. Rico, Appl. Phys. Lett. 1(6), 508 (1982).

    Article  ADS  Google Scholar 

  15. C. E. Rice, I. L. Jackel, and W. L. Brown, J. Appl. Phys. 5, 4437 (1985).

    Article  ADS  Google Scholar 

  16. T. Bremer, P. Hertal, S. Celtshig, et al., Thin Solid Films 175, 235 (1983).

    Article  ADS  Google Scholar 

  17. A. N. Sergeev, Obz. Electron. Tekh., Ser. 6: Mater., No. 4 (1428), 68 (1990).

    Google Scholar 

  18. A. N. Didenko, O. L. Khasanov, and A. I. Ryabchikov, in Proceedings of the International Conference on Modification of Properties of Surface Layers of Nonsemiconducting Materials Using Particle Beams (MPSL), Summy, 1993, p. 442.

  19. A. N. Sergeev, V. G. Bamburov, G. P. Shveikin, et al., Near-Surface Proton-Ion Doping of Oxides (Ural’sk. Otd. Akad. Nauk SSSR, Sverdlovsk, 1990).

    Google Scholar 

  20. M. Lagos, I. Mahanty, and V. Slusarenko, Surface Sci. 191, 806 (1987).

    Article  ADS  Google Scholar 

  21. V. P. Plekhanov, F. E. Shakalov, S. N. Sutulin, et al., Obz. Electron. Tekh., Ser. 6: Mater., No. 1, 62 (1988).

    Google Scholar 

  22. Yu. N. Korkishko and V. A. Gan’shin, Zh. Tekh. Fiz. 58, 692 (1988).

    Google Scholar 

  23. F. E. Shakalov, L. A. Osadchev, S. V. Rudnev, Obz. Electron. Tekh., Ser. 6: Mater., No. 5 (1991).

    Google Scholar 

  24. Yu. V. Borodin and V. A. Vereshchagin, “Proton-ion doping of oxides in thin layer,” Available from ONIITEKHIM, No. 180-XII 91 (Cherkassy, 1991), p. 56.

    Google Scholar 

  25. Yu. I. Tyurin, V. P. Borisov, A. N. Grishin, et al., “Hydrogen in semiconductors,” Available from VINITI, No. 2144-B 90 (Tomsk, 1990).

    Google Scholar 

  26. M. Skowronski and R. E. Kromer, J. Appl. Phys. 69, 7825 (1991).

    Article  ADS  Google Scholar 

  27. T. Kobayashi, K. Muto, J. Kai, et al., J. Magn. Reson. 34, 459 (1979).

    ADS  Google Scholar 

  28. A. Wells, Structural Inorganic Chemistry (Clarendon, Oxford, 1987), Vol. 1, pp. 191–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Borodin.

Additional information

Original Russian Text © Yu.V. Borodin, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 1, pp. 109–113.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, Y.V. Low-temperature nanodoping of protonated LiNbO3 crystals by univalent ions. Tech. Phys. 60, 107–111 (2015). https://doi.org/10.1134/S1063784215010065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215010065

Keywords

Navigation