Skip to main content
Log in

A Study of Electrical Characteristics of Crystals of Homogeneously Doped LiNbO3:Zn,Mg in the Temperature Range of 450–900 K

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In a series of initially polydomain crystals of LiNbO3:Zn,Mg obtained by the homogeneous doping of the crystals in the concentration ranges of around 1 ± 0.02 mol % MgO and 3.0–4.6 mol % ZnO, abrupt increases in temperature dependences of electrical conductivity σ(T) and dielectric constant ε(T) with the manifestation of low-frequency dielectric dispersion are observed near T* ≈ 800 K. At T > T*, these crystals exhibit the activation enthalpy (Ha ≈ 1.76–2.07 eV) and transport enthalpy (Hm ≈ 1.55–2.01 eV) values that are unusually high for cationic conductors, while both values at T < T* are typical of conductivity caused by Li+ cations in LiNbO3 crystals (Ha ≈ 1.2–1.4 eV and Hm ≈ 1.1–1.28 eV). Anomalous increases in the Ha and Hm values for crystals with the LiNbO3 structure are apparently associated with the formation of associated vacancies (divacancies) with a finite binding energy and a pair-correlated hop of Li+ ions in the LiNbO3 : Zn,Mg crystals in the high-temperature region with increased conductivity (T > T*).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).

    Google Scholar 

  2. J. C. Burfoot and G. W. Taylor, Polar Dielectrics and Their Applications (Univ. California, Oakland, 1979).

    Book  Google Scholar 

  3. Yu. S. Kuz’minov, Lithium Niobate and Lithium Tantalite As the Materials for Nonlinear Optics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  4. A. Räuber, “Chemistry and physics of lithium niobate carreut topics in material science,” in Current Topics in Material Sciences, Ed. by E. Kaldis (North–Holland, Amsterdam, 1978), Vol. 1, p. 481.

    Google Scholar 

  5. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  6. G. Rosenman, A. Skliar, and A. Arie, Ferroelectr. Rev. 1, 263 (1999).

    Google Scholar 

  7. T. S. Chernaya, T. R. Volk, I. A. Verin, and V. I. Simonov, Crystallogr. Rep. 53 (4), 612 (2008). https://doi.org/10.1134/S106377450804007X

    Article  Google Scholar 

  8. M. Aillerie, P. Bourson, M. Mostefa, F. Abdi, and M. D. Fontana, J. Phys.: Conf. Ser. 416, 012001 (2013). https://doi.org/10.1088/1742-6596/416/1/012001

    Article  Google Scholar 

  9. Xu Guanfeng, Zhu Jianbin, Xiao Bing, Yang Xiaolong, and Wang Xiu, Cryst. Res. Technol. 31 (2), K20 (1996). https://doi.org/10.1002/crat.2170310226

    Article  Google Scholar 

  10. Yang Xiaolong, Xu Guanfeng, Li Heping, Zhu Jianguo, and Wang Xiu, Cryst. Res. Technol. 31 (4), 521 (1996). https://doi.org/10.1002/crat.2170310418

    Article  Google Scholar 

  11. M. N. Palatnikov, V. A. Sandler, N. V. Sidorov, and O. V. Makarova, Izv. St. Petersburg Gos. Tekhnol. Inst. (Tekn. Univ.), No. 37 (63), 75 (2016).

  12. M. N. Palatnikov, N. V. Sidorov, O. V. Makarova, and I. V. Biriukova, Fundamental Aspects of the Technology of Heavily Doped Lithium Niobate Crystals (Kol’sk. Nauchn. Tsentr, Ross. Akad. Nauk, Apatity, 2017) [in Russian].

    Google Scholar 

  13. M. N. Palatnikov, V. A. Sandler, N. V. Sidorov, and O. V. Makarova, Inorg. Mater. 54 (9), 915 (2018). https://doi.org/10.1134/S002016851809011X

    Article  Google Scholar 

  14. M. N. Palatnikov, N. V. Sidorov, D. V. Manukovskaya, O. V. Makarova, L. A. Aleshina, and A. V. Kadetova, J. Am. Ceram. Soc. 100 (8), 3703 (2017). https://doi.org/10.1111/jace.14851

    Article  Google Scholar 

  15. M. N. Palatnikov, I. V. Birukova, S. M. Masloboeva, O. V. Makarova, D. V. Manukovskaya, and N. V. Sidorov, J. Cryst. Growth 386, 113 (2014). https://doi.org/10.1016/j.jcrysgro.2013.09.038

    Article  ADS  Google Scholar 

  16. G. T. Niitsu, H. Nagata, and A. C. M. Rodrigues, J. Appl. Phys. 95, 3116 (2004). https://doi.org/10.1063/1.1647263

    Article  ADS  Google Scholar 

  17. Physics of Electrolytes, Vol. 1: Transport Processes in Solid Electrolytes and in Electrodes, Ed. by J. Hladik (Academic, London, 1972).

    Google Scholar 

Download references

Funding

This study was performed within the framework of a state order of the Ministry of Science and Higher Education of the Russian Federation (research topic no. 0226-2018-0004, state registration no. AAAA-A18-118022190125-2) and partially supported by the Russian Foundation for Basic Research (grant no. 18-03-00231-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Palatnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palatnikov, M.N., Sandler, V.A., Sidorov, N.V. et al. A Study of Electrical Characteristics of Crystals of Homogeneously Doped LiNbO3:Zn,Mg in the Temperature Range of 450–900 K. Tech. Phys. 65, 1987–1993 (2020). https://doi.org/10.1134/S1063784220120208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220120208

Navigation