Skip to main content
Log in

Phase size effect in thin Ge-Se polycrystalline films

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The Raman spectra of thin (d = 60–170 nm) Ge-Se polycrystalline films obtained by vacuum thermal evaporation of Ge10Se90 glass are investigated in the spectral range 110–310 cm−1. The coexistence of the glasslike and crystalline phases α-Se, β-Se, and β-GeSe2 is established using the X-ray diffraction method. Analysis of diffraction patterns and the Raman spectra of polycrystalline samples of various thicknesses demonstrates a phase size effect in the transition of Se from the α-monoclinic to the β monoclinic modification (d ∼ 120 nm). It is found that the crystalline phase of Se is of the nanodisperse type with an average grain size of ∼30–50 nm. Crystallites of β-GeSe2 have an average size of ∼100–130 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Sharma, K. Jain, and A. C. Rastogi, Curr. Appl. Phys. 3, 199 (2003).

    Article  Google Scholar 

  2. X. Mathew, P. J. Enriquez, et al., Sol. Energy 77, 831 (2004).

    Article  Google Scholar 

  3. B. Ulrlrich, J. W. Tomm, N. M. Dushkina, et al., Solid State Commun. 116, 33 (2000).

    Article  ADS  Google Scholar 

  4. A. U. Ubale and S. G. Ibragim, Int. J. Mater. Chem. 2, 57 (2012).

    Article  Google Scholar 

  5. S. Chatterjee, P. K. Purkait, and D. Garg, Appl. Therm. Eng. 29, 2106 (2009).

    Article  Google Scholar 

  6. P. Sharma and S. C. Katyal, J. Non-Cryst. Solids 354, 3836 (2008).

    Article  ADS  Google Scholar 

  7. I. V. Bodnar’, A. P. Molochko, N. P. Solovei, et al., Dokl. Beloruss. Gos. Univ. Informatiki Radioelektron., No. 3, 129 (2004).

    Google Scholar 

  8. Q. Liu, X. Zhao, and F. Gan, Chalcogenide Lett. 3, 15 (2006).

    Google Scholar 

  9. G. K. Solanki, M. P. Deshpande, M. K. Agarwal, et al., J. Mater. Sci. Lett. 22, 985 (2003).

    Article  Google Scholar 

  10. R. T. Ananth Kumara, P. Chithra Lekhab, B. Sundarakannana, et al., J. Non-Cryst. Solids 198, 723 (1996).

    Google Scholar 

  11. X. Zhang, H. Ma, and J. Lucas, J. Optoelectron. Adv. Mater. 5, 1327 (2003).

    Google Scholar 

  12. L. Petit, N. Carlie, K. Richardson, et al., J. Phys. Chem. Solids 66, 1788 (2005).

    Article  ADS  Google Scholar 

  13. P. Nagels, L. Tichy, E. Sleeckx, et al., J. Non-Cryst. Solids 227–230, 705 (1998).

    Article  Google Scholar 

  14. A. I. Khudiar, M. Zulfequar, and Z. H. Khan, J. Non-Cryst. Solids 198–200, 723 (1996); J. Non-Cryst. Solids 357, 1264 (2011).

    Google Scholar 

  15. E. Sleeckx, L. Tichy, P. Nagels, et al., J. Non-Cryst. Solids 198–200, 723 (1996).

    Article  Google Scholar 

  16. B. N. Levonovich, Poverkhnost’: Rentgenovskie, Sinkhrotronnye, Neitron. Issled., No. 2, 52 (2010).

    Google Scholar 

  17. N. Mitsutaka, W. Yong, M. Osamu, et al., J. Non-Cryst. Solids 198–200, 740 (1996).

    Google Scholar 

  18. A. P. Avachev, S. P. Vikhrov, N. V. Vishnyakov, et al., Semiconductors 46, 591 (2012).

    Article  ADS  Google Scholar 

  19. P. K. Dwivedi, S. K. Tripathi, A. Pradhan, et al., J. Non-Crystal. Solids 266–269, 924 (2000).

    Article  Google Scholar 

  20. E. V. Aleksandrovich, E. V. Stepanova, I. V. Fedotova, et al., Khim. Fiz. Mezoskop. 12, 474 (2010).

    Google Scholar 

  21. M. Esquerre, J. C. Carballes, J. P. Audiere, et al., J. Mater. Sci. 13, 1217 (1978).

    Article  ADS  Google Scholar 

  22. L. S. Palatnik, M. Ya. Fuks, and V. M. Kosevich, Mechanism of Formation and Substructure of Condensed Thin Films, Ed. by V. A. Alekseev (Nauka, Moscow, 1972).

  23. V. S. Minaev, S. P. Timoshenkov, and V. V. Kalugin, J. Optoelectron. Adv. Mater. 7, 1717 (2005).

    Google Scholar 

  24. D. I. Bletskan, E. M. Griga, and V. N. Kabatsii, Neorg Mater. 43, 145 (2007).

    Article  Google Scholar 

  25. V. V. Poborchii, A. V. Kolobov, J. Caro, et al., Chem. Phys. Lett. 280, 17 (1997).

    Article  ADS  Google Scholar 

  26. P. M. Bridenbaugh, G. P. Espinoza, J. E. Griffiths, et al., Phys. Rev. B 20, 4140 (1979).

    Article  ADS  Google Scholar 

  27. Z. M. Jaksic, Phys. Status Solidi B 239, 131 (2003).

    Article  ADS  Google Scholar 

  28. T. Ohsaka, J. Non-Cryst. Solids 17, 121 (1975).

    Article  ADS  Google Scholar 

  29. G. Lucovsky and E. L. Gallener, J. Non-Cryst. Solids 35–36, 1209 (1980).

    Article  Google Scholar 

  30. A. A. Aivazov, B. G. Budagyan, S. P. Vikhrov, and A. I. Popov, Disordered Semiconductors, Ed. by A. A. Aivazov (MEI, Moscow, 1995).

  31. E. V. Aleksandrovich, E. V. Stepanova, and A. V. Vakhrouchev, Int. J. Nanomech. Sci. Technol. 2, 61 (2011).

    Article  Google Scholar 

  32. K. Sakai, T. Uemoto, H. Yokoyama, et. al., J. Non-Cryst. Solids 266–269, 933 (2000).

    Article  Google Scholar 

  33. D. R. Goyal and A. S. Maan, J. Non-Cryst. Solids 183, 182 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Aleksandrovich.

Additional information

Original Russian Text © E.V. Aleksandrovich, E.V. Stepanova, A.V. Vakhrouchev, A.N. Aleksandrovich, D.L. Bulatov, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 9, pp. 50–55.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrovich, E.V., Stepanova, E.V., Vakhrouchev, A.V. et al. Phase size effect in thin Ge-Se polycrystalline films. Tech. Phys. 58, 1291–1296 (2013). https://doi.org/10.1134/S106378421309003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421309003X

Keywords

Navigation