Skip to main content

Advertisement

Log in

Physical characterization of Ge–Zn–Se thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Different \({(\mathrm{GeZn})}_{100-\mathrm{x}}{\mathrm{Se}}_{\mathrm{x}}\) films have been thermally evaporated. The film absorbance (A) has been measured in the 0.3–0.9 μm spectral range. The non-crystalline state of \({(\mathrm{GeZn})}_{100-\mathrm{x}}{\mathrm{Se}}_{\mathrm{x}}\) films was confirmed by X-ray diffractograms. A small deviation between the selected compositions and those experimentally investigated was confirmed by energy-dispersive X-ray analysis. The ultrasonic longitudinal (\({v}_{L}\)) and shear (\({v}_{T}\)) velocities of \({(\mathrm{GeZn})}_{100-\mathrm{x}}{\mathrm{Se}}_{\mathrm{x}}\) glasses were measured using the pulse-echo technique. The composition dependence of the optical band gap (Eg) is well discussed in terms of the Mott and Davies Model (MDM). The linear correlation between the changes in the optical band gap (ΔEg) and in the band tail parameter (\(\Delta \sqrt{B}\)) confirmed the disorder’s decrease, which explains the observed increase in the Eg values. The latter was increased from 1.75 to 2.32 eV with increasing Se content, i.e., these films can be used as optical absorbers in the wavelength range of 0.530–0.710 μm. On the other hand, Duffy’s relationship was used for the theoretical estimation of optical gap (\({E}_{g}^{th}\)) values. There is a good match between the \({E}_{g}^{th}\) values and those experimentally investigated. With the help of the Herve and Vandamme relationship, the value of the refractive index (nth) of the studied films was investigated. The nth values are found to decrease with increasing Se content, which is because of decreasing glass density (\(\rho\)). The values of the ultrasonic velocities are increased with increasing Se content, which explains the observed increase in the elastic moduli, Poisson’s ratio \((\mathcal{o}),\) and Debye temperature (\({\theta }_{D}\)). The obtained results are well explained in terms of composition effects on the distribution of the chemical bonds, the total mean bond energy < E > , the mean bond energy (Es), the number of constraints (Ns) and the cohesive energy (CE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Zakery, S.R. Elliott, J. Non-Cryst. Solids 330, 1 (2003)

    Article  CAS  Google Scholar 

  2. Y. Qi, W. Yang, X. Ma et al., J. Phys.: Condens. Matter. 19, 136005 (2007)

    Google Scholar 

  3. C. Peng, L. Cheng, M. Mansuripur, J. Appl. Phys. 82, 4183 (1997)

    Article  CAS  Google Scholar 

  4. N. Hô, J.M. Laniel, R. Vallée, A. Villeneuve, Opt. Lett. 28, 965 (2003)

    Article  Google Scholar 

  5. J.-C. Chou, S.-Y. Yang, Y.-S. Wang, Mater. Chem. Phys. 78, 666 (2003)

    Article  CAS  Google Scholar 

  6. A. Ozols, D. Saharovs, M. Reinfelde, J. Non-Cryst. Solids 352, 2652 (2006)

    Article  CAS  Google Scholar 

  7. J.R. Neilson, A. Kovalskiy, M. Vlček, H. Jain, F. Miller, J. Non-Cryst. Solids 353, 1427 (2007)

    Article  CAS  Google Scholar 

  8. P. Sharma, N. Sharma, S. Sharda, S.C. Katyal, V. Sharma, Prog. Solid State Chem. 44, 131 (2016)

    Article  CAS  Google Scholar 

  9. I. Boukhris, I. Kebaili, S. Znaidia et al., Phys. B 583, 412066 (2020)

    Article  CAS  Google Scholar 

  10. I. Boukhris, I. Kebaili, R. Neffati, A. Dahshan, Appl. Phys. A Mater. Sci. Process. 126, 534 (2020)

    Article  CAS  Google Scholar 

  11. H.H. Hegazy, A. Dahshan, K.A. Aly, Mater. Res. Express 6, 025204 (2019)

    Article  Google Scholar 

  12. K.A. Aly, S.R. Alharbi, Y.B. Saddeek, A.M. Ali, A. Dahshan, K.S. Shaaban, Mater. Res. Express 5, 065208 (2018)

    Article  Google Scholar 

  13. C. Kumari, S.C. Katyal, P. Sharma, Phase Transit. 94, 945 (2021)

    Article  CAS  Google Scholar 

  14. A.S. Hassanien, H.R. Alamri, I.M. El Radaf, Opt. Quant. Electron. 52, 335 (2020)

    Article  CAS  Google Scholar 

  15. I. Sharma, A.S. Hassanien, J. Non-Cryst. Solids 548, 120326 (2020)

    Article  CAS  Google Scholar 

  16. R Gadhwal, H Singh, A Devi (2022) Materials today: proceedings

  17. M.M. Wakkad, J. Therm. Anal. Calorim. 63, 533 (2001)

    Article  CAS  Google Scholar 

  18. S. Augustine, S. Ampili, J.K. Kang, E. Mathai, Mater. Res. Bull. 40, 1314 (2005)

    Article  CAS  Google Scholar 

  19. J. Liu, S. Zhang, M. Li et al., J. Alloy. Compd. 816, 152683 (2020)

    Article  CAS  Google Scholar 

  20. E.A. Romanova, Y.S. Kuzyutkina, V.S. Shiryaev, S. Guizard, Quantum Electron. 48, 228 (2018)

    Article  CAS  Google Scholar 

  21. B. Bureau, S. Danto, H.L. Ma, C. Boussard-Plédel, X.H. Zhang, J. Lucas, Solid State Sci. 10, 427 (2008)

    Article  CAS  Google Scholar 

  22. N. Suri, K.S. Bindra, R. Thangaraj, J. Phys.: Condens. Matter 18, 9129 (2006)

    CAS  Google Scholar 

  23. J. Duffy, J. Phys. C: Solid State Phys. 13, 2979 (1980)

    Article  CAS  Google Scholar 

  24. M. Yamaguchi, Philos. Mag. B 51, 651 (1985)

    Article  CAS  Google Scholar 

  25. F.H. El-kader, S.A. Gaafar, K.H. Mahmoud, S.I. Bannan, M.F.H. El-kader, Curr. Appl. Phys. 8, 78 (2008)

    Article  Google Scholar 

  26. S. Adachi, J. Appl. Phys. 69, 7768 (1991)

    Article  CAS  Google Scholar 

  27. E. Zhu, Y. Liu, X. Sun et al., J. Non-Cryst. Solids: X 1, 100015 (2019)

    CAS  Google Scholar 

  28. A.K. Tammam, Z. Kahlifa, S.A. Elsayed, J. Non-Cryst. Solids 529, 119729 (2020)

    Article  CAS  Google Scholar 

  29. S. Kang, Y. Fu, H. Gu, C. Lin, J. Non-Cryst. Solids: X 15, 100111 (2022)

    CAS  Google Scholar 

  30. S.K. Pal, N. Mehta, Phys. B 645, 414242 (2022)

    Article  CAS  Google Scholar 

  31. A. Alwany, M. Algradee, M. Hafith, M. Abdel-Rahim, Relation 6, 90 (2017)

    Google Scholar 

  32. L. Zheng, L. Hao, H. Ma et al., Curr. Microbiol. 69, 270 (2014)

    Article  CAS  Google Scholar 

  33. A. Alwany, G.M. Youssef, M. Algradee, M. Hafith, M. Abdel-Rahim, A.M. Abd-Elnaiem, Process. Appl. Ceram. 15, 385 (2021)

    Article  CAS  Google Scholar 

  34. V. Vassilev, S. Stephanova, I. Markova et al., J. Mater. Sci. 32, 4443 (1997)

    Article  CAS  Google Scholar 

  35. M. Vlček, M. Frumar, J. Non-Cryst. Solids 97–98, 1223 (1987)

    Article  Google Scholar 

  36. E. Savova, E. Skordeva, E. Vateva, J. Phys. Chem. Solids 55, 575 (1994)

    Article  CAS  Google Scholar 

  37. E.R. Skordeva, D.D. Arsova, J. Non-Cryst. Solids 192–193, 665 (1995)

    Article  Google Scholar 

  38. X. Wang, Y. Zhu, M. Liu et al., ACS Omega 6, 18711 (2021)

    Article  CAS  Google Scholar 

  39. J.D. Erickson, R.D. Riparetti, J.C. Fettinger, P.P. Power, Organometallics 35, 2124 (2016)

    Article  CAS  Google Scholar 

  40. Y. Wang, B. Quillian, P. Wei et al., J. Am. Chem. Soc. 127, 11944 (2005)

    Article  CAS  Google Scholar 

  41. M.I. Abd-Elrahman, A.Y. Abdel-Latief, R.M. Khafagy, N. Younis, M.M. Hafiz, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 29 (2015)

    Article  CAS  Google Scholar 

  42. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Article  CAS  Google Scholar 

  43. K. Samudrala, S.B. Devarasetty, IOP Conf. Series: Mater. Sci. Eng. 330, 012042 (2018)

    Article  Google Scholar 

  44. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, New York, 1979)

    Google Scholar 

  45. E.A. Davis, N.F. Mott, Physics 22, 0903 (1970)

    CAS  Google Scholar 

  46. K.A. Aly, J. Mater. Sci.: Mater. Electron. 33, 2889 (2022)

    CAS  Google Scholar 

  47. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  48. P. Hervé, L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994)

    Article  Google Scholar 

  49. V. Pamukchieva, A. Szekeres, K. Todorova et al., J. Non-Cryst. Solids 355, 2485 (2009)

    Article  CAS  Google Scholar 

  50. X. Feng, W.J. Bresser, P. Boolchand, Phys. Rev. Lett. 78, 4422 (1997)

    Article  CAS  Google Scholar 

  51. L. Tichý, H. Tichá, Mater. Lett. 21, 313 (1994)

    Article  Google Scholar 

  52. A. Dahshan, K.A. Aly, J. Non-Cryst. Solids 408, 62 (2015)

    Article  CAS  Google Scholar 

  53. L. Tichý, A. Tříska, H. Ticha, M. Frumar, J. Klikorka, Solid State Commun. 41, 751 (1982)

    Article  Google Scholar 

  54. J.C. Phillips, M.F. Thorpe, Solid State Commun. 53, 699 (1985)

    Article  CAS  Google Scholar 

  55. N.N. Greenwood, A. Earnshaw, Chemistry of the elements (Elsevier, Amsterdam, 2012)

    Google Scholar 

  56. A.S. Hassanien, K.A. Aly, A.A. Akl, J. Alloy. Compd. 685, 733 (2016)

    Article  CAS  Google Scholar 

  57. M.F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983)

    Article  CAS  Google Scholar 

  58. S. Fouad, Phys. B 293, 276 (2001)

    Article  CAS  Google Scholar 

  59. M. Ahmad, K.A. Aly, A. Dahshan et al., J. Market. Res. 16, 1114 (2022)

    CAS  Google Scholar 

  60. L. Pauling, The nature of the chemical bond (Cornell University Press, New York, 1960)

    Google Scholar 

  61. J.C. Phillips, Bonds and bands in semiconductors (Academic Press, New York, 1973)

    Google Scholar 

  62. L. Pauling, Nature of the chemical bond cornell university (Press, Ithaca, 1960)

    Google Scholar 

  63. S. Gao, X. Bao, iScience 23, 100802 (2020)

    Article  CAS  Google Scholar 

  64. K.A. Aly, J. Alloy. Compd. 630, 178 (2015)

    Article  CAS  Google Scholar 

  65. H. Afifi, S. Marzouk, Mater. Chem. Phys. 80, 517 (2003)

    Article  CAS  Google Scholar 

  66. Y.B. Saddeek, J. Non-Cryst. Solids 357, 2920 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P2/102/43.

Author information

Authors and Affiliations

Authors

Contributions

The first and second authors contributed to the sample’s preparation, measurements, data analyzing, discussions, and writing the manuscript.

Corresponding author

Correspondence to Kamal A. Aly.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest for all the authors in this manuscript, and it is not involved Human Participants or Animals. When the manuscript is submitted, all the authors are agreed.

Ethical approval

The authors agree to the ethical standards followed by the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibraheem, A.A., Aly, K.A. Physical characterization of Ge–Zn–Se thin films. J Mater Sci: Mater Electron 33, 26905–26914 (2022). https://doi.org/10.1007/s10854-022-09355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09355-7

Navigation