Skip to main content
Log in

Evolution of shock waves in SiC ceramic

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The evolution of a shock compression wave in SiC ceramic is measured for determining the possible contribution of relaxation processes to the high-rate straining. No appreciable decay of the elastic precursor and other features of stress relaxation are revealed when the sample thickness changes from 0.5 to 8.3 mm, and the evolution of the compression wave corresponds to a simple wave. The measured values of the Hugoniot elastic limit (σHEL = 8.72 ± 0.17 GPa) and spall strength (σsp = 0.50–0.62 GPa) with allowance for the density of the ceramic are in conformity with the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kumar and R. G. Kumble, J. Appl. Phys. 40, 3475 (1969).

    Article  ADS  Google Scholar 

  2. M. A. Meyers, D. J. Benson, O. Vohringer, B. K. Kad, Q. Xue, and H. H. Fu, Mater. Sci. Eng., A 322, 194 (2002).

    Article  Google Scholar 

  3. G. V. Garkushin, G. I. Kanel’, and S. V. Razorenov, Phys. Solid State 54, 790 (2012).

    Article  ADS  Google Scholar 

  4. N. K. Bourne and J. C. F. Millett, J. Appl. Phys. 81, 6019 (1997).

    Article  ADS  Google Scholar 

  5. R. Feng, Y. M. Gupta, and G. Yuan, in Shock Compression of Condensed Matter-1997, Ed. by S. C. Schmidt, D. P. Dandekar, and J. W. Forbes (AIP, New York, 1998), pp. 483–488.

  6. M. E. Kipp and D. E. Grady, in Shock Compression of Condensed Matter-1989: Collection of Articles, Ed. by S. C. Schmidt, J. N. Johnson, and L. W. Davison (North-Holland, Amsterdam, 1990), pp. 377–380.

  7. W. H. Gust, A. C. Holt, and E. B. Royce, J. Appl. Phys. 44, 550 (1973).

    Article  ADS  Google Scholar 

  8. T. J. Vogler, W. D. Reinhart, and L. C. Chhabildas, J. Appl. Phys. 99, 023512 (2006).

    Article  ADS  Google Scholar 

  9. W. D. Winkler and A. J. Stilp, in Shock Compression of Condensed Matter-1991, Ed. by S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker (North-Holland, Amsterdam, 1990), pp. 475–478.

  10. P. Bartkowski and D. P. Dandekar, in Shock Compression of Condensed Matter-1995, Ed. by S. C. Schmidt and W. C. Tao; AIP Conf. Proc. 370, 535 (1996).

    ADS  Google Scholar 

  11. A. M. Rajendran and D. J. Grove, Int. J. Impact Eng. 18, 611 (1996).

    Article  Google Scholar 

  12. R. Feng, G. F. Raiser, and Y. M. Gupta, J. Appl. Phys. 79, 1378 (1996).

    Article  ADS  Google Scholar 

  13. T. J. Holmquist and G. R. Johnson, J. Appl. Phys. 97, 093502 (2005).

    Article  ADS  Google Scholar 

  14. G. G. Gnesin, Silicon-Carbide Materials (Metallurgiya, Moscow, 1977), pp. 108–128.

    Google Scholar 

  15. A. P. Garshin, et al., Constructional Silicon-Carbide Materials (Mashinostroenie, Leningrad, 1975).

    Google Scholar 

  16. V. I. Rumyantsev, S. Yu. Boikov, A. S. Osmakov, and V. I. Fishchev, Ogneup. Tekh. Keram., No. 12, 29 (2007).

    Google Scholar 

  17. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Matter (Yanus-K, Moscow, 1996).

    Google Scholar 

  18. L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).

    Article  ADS  Google Scholar 

  19. L. V. Al’tshuler, Sov. Phys. Usp, 8, 52 (1965).

    Article  ADS  Google Scholar 

  20. N. K. Bourne, J. C. F. Millett, Z. Rosenberg, and N. H. Murray, J. Mech. Phys. Sol. 46, 1887 (1998).

    Article  ADS  MATH  Google Scholar 

  21. N. Bourne, J. Millett, and I. Pickup, J. Appl. Phys. 81, 6019 (1997).

    Article  ADS  Google Scholar 

  22. N. K. Bourne, Z. Rosenberg, and J. E. Field, in Shock Compression of Condensed Matter-1997, Ed. by S. C. Schmidt, et al. (AIP, New York, 1998), p. 493.

  23. G. I. Kanel, A. A. Bogach, S. V. Razorenov, A. S. Savinykh, Zhen Chen, and A. Rajendran, in Shock Compression of Condensed Matter-2003, Ed. by M. D. Furnish, Y. M. Gupta, and J. W. Forbes (AIP, New York, 2004), pp. 739–742.

  24. G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Savinykh.

Additional information

Original Russian Text © A.S. Savinykh, G.I. Kanel, S.V. Razorenov, V.I. Rumyantsev, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 7, pp. 43–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savinykh, A.S., Kanel, G.I., Razorenov, S.V. et al. Evolution of shock waves in SiC ceramic. Tech. Phys. 58, 973–977 (2013). https://doi.org/10.1134/S1063784213070207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213070207

Keywords

Navigation