Skip to main content
Log in

Evolution of the ion velocity distribution after sudden turn-on of a periodic electric field: A charge exchange model

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An analytical solution to the problem of the ion velocity distribution evolution after turn-on of a periodic electric field is derived. The solution is constructed for the case of resonance charge exchange at a constant collision frequency (charge exchange model). The specific features of the transient process at the early stage of evolution are revealed. The phase shift between the applied field and the ion current at the periodic stage of the process is analyzed. The distribution function exhibits abrupt steps propagating in the velocity space. A method is proposed to study the ion-atom interaction cross section using a periodic electric field. The method is based on analysis of the current toward the electrode with a retarding potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Maneschijn and W. J. Goedheer, J. Appl. Phys. 69, 2923 (1991).

    Article  ADS  Google Scholar 

  2. A. D. Kypers and H. J. Hopman, J. Appl. Phys. 63, 1894 (1988).

    Article  ADS  Google Scholar 

  3. F. F. Chen and J. P. Chang, Lecture Notes on Principles of Plasma Processing (Springer, New York, 2003).

    Book  Google Scholar 

  4. M. A. Liberman and A. J. Lichtenberg, Principles of Plasma Discharge and Material Processing (Wiley Interscience, Hoboken, NJ, 2005).

    Book  Google Scholar 

  5. I. A. Buryakov, E. V. Krylov, E. G. Nazarov, and U. Kh. Rasulev, Int. J. Mass Spectrom. Ion Processes 128, 143 (1993).

    Article  ADS  Google Scholar 

  6. B. Li, R. E. Robson, and R. D. White, Phys. Rev. E 74, 026405 (2006).

    Article  ADS  Google Scholar 

  7. A. Y. Ender, I. A. Ender, and A. B. Gerasimenko, Open Plasma Phys. J. 2, 24 (2009).

    Article  ADS  Google Scholar 

  8. A. Ya. Ender and I. A. Ender, Tech. Phys. 55, 166 (2010).

    Article  Google Scholar 

  9. A. Ya. Ender and I. A. Ender, and A. B. Gerasimenko, Tech. Phys. 55, 176 (2010).

    Article  Google Scholar 

  10. A. Ya. Ender and I. A. Ender, Collision Integral of the Boltzmann Equation and Moment Method (St. Petersb. Univ., St. Petersburg, 2003).

    Google Scholar 

  11. R. E. Robson and T. Makabe, Aus. J. Phys. 47, 305 (1994).

    ADS  Google Scholar 

  12. H. Sugawara, H. Tagashira, and Y. Sakai, J. Phys. D: Appl. Phys. 29, 1168 (1996).

    Article  ADS  Google Scholar 

  13. P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).

    Article  ADS  MATH  Google Scholar 

  14. E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988).

    Book  Google Scholar 

  15. D. Burnett, Proc. London Math. Soc. 40, 382 (1935).

    MathSciNet  Google Scholar 

  16. T. Kihara, Rev. Mod. Phys. 25, 844 (1953).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Ender.

Additional information

Original Russian Text © A.Ya. Ender, I.A. Ender, A.B. Gerasimenko, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 7, pp. 6–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ender, A.Y., Ender, I.A. & Gerasimenko, A.B. Evolution of the ion velocity distribution after sudden turn-on of a periodic electric field: A charge exchange model. Tech. Phys. 58, 936–945 (2013). https://doi.org/10.1134/S1063784213070074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213070074

Keywords

Navigation