Skip to main content
Log in

Abstract

A theoretical model is proposed; it describes the evolution of the charge and energy distributions of ions passing through a target as a Markov process, in which the probability of transitions between elements of phase space is proportional to the cross sections of inelastic collisions and to the corresponding ion energy losses. The inclusion of correlations between charge-exchange processes and the target-atom ionization makes it possible to describe the influence of the energy distribution of ions not only on the process of formation of the equilibrium charge distribution, but also on the change in the ion energy mean in the case where the charge distribution is nonequilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. E. B. Cowern, P. M. Read, C. J. Sofield, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 12, 43 (1985).

    Google Scholar 

  2. H. Ogawa, I. Katayama, H. Ikegami, et al., Phys. Rev. B 43, 11370 (1991).

    Article  Google Scholar 

  3. H. Ogawa, I. Katayama, I. Sugai, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 82, 80 (1993).

    Google Scholar 

  4. C. M. Frey, G. Dollinger, A. Bergmaier, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 107, 31 (1996).

    Google Scholar 

  5. A. Blazevic, H. G. Bohlen, and W. Oertzen, Phys. Rev. A 61, 032901 (2000).

    Article  Google Scholar 

  6. A. Blazevic, H. G. Bohlen, and W. Oertzen, Nucl. Instrum. Methods Phys. Res., Sect. B 190, 64 (2002).

    Google Scholar 

  7. H. Ogawa, I. Katayama, Y. Haruyama, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 195, 175 (2002).

    Google Scholar 

  8. P. Sigmund and A. Schinner, Nucl. Instrum. Methods Phys. Res., Sect. B 384, 30 (2016). https://doi.org/10.1016/j.nimb.2016.07.016

    Google Scholar 

  9. J. F. Ziegler, SRIM: The Stopping and Range of Ions in Matter. http://www.srim.org.

  10. P. Sigmund and A. Schinner, Nucl. Instrum. Methods Phys. Res., Sect. B 195, 64 (2002).

    Google Scholar 

  11. P. L. Grande and G. Schiwietz, Adv. Quantum Chem. 45, 7 (2004). https://doi.org/10.1016/S065-3276(04)45002-3

    Article  Google Scholar 

  12. J. P. Rozet, C. Stephan, and D. Vernhet, Nucl. Instrum. Methods Phys. Res., Sect. B 107, 67 (1996).

    Google Scholar 

  13. Yu. A. Belkova, N. V. Novikov, and Ya. A. Teplova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (4), 769 (2018). https://doi.org/10.1134/S1027451018040250

    Article  Google Scholar 

  14. S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958).

    Article  Google Scholar 

  15. Yu. A. Belkova, N. V. Novikov, and Ya. A. Teplova, Nucl. Instrum. Methods Phys. Res., Sect. B 373, 35 (2016). https://doi.org/10.1016/j.nimb.2016.02.044

    Google Scholar 

  16. N. V. Novikov and Ya. A. Teplova, J. Phys.: Conf. Ser. 194, 082032 (2009). https://doi.org/10.1088/1742-6596/194/8/082032

    Google Scholar 

  17. I. S. Dmitriev, Ya. A. Teplova, Yu. A. Belkova, et al., At. Data Nucl. Data Tables 96, 85 (2010). https://doi.org/10.1016/j.adt.2009.09.003

    Article  Google Scholar 

  18. N. V. Novikov, Ya. A. Teplova, and Yu. A. Fainberg, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7 (2), 227 (2013). https://doi.org/10.1134/S1027451013020171

    Article  Google Scholar 

  19. N. V. Novikov and Ya. A. Teplova, Phys. Lett. A 378, 1286 (2014). https://doi.org/10.1016/j.physleta.2014.03.004

    Article  Google Scholar 

  20. G. Schiwietz and P. L. Grande, Nucl. Instrum. Methods Phys. Res., Sect. B 175–177, 125 (2001).

    Google Scholar 

  21. Yu. A. Belkova, N. V. Novikov, and Ya. A. Teplova, Nucl. Instrum. Methods Phys. Res., Sect. B 343, 110 (2015). https://doi.org/10.1016/j.nimb.2014.11.016

    Google Scholar 

  22. N. V. Novikov and Ya. A. Teplova, Phys. Lett. A 377, 463 (2013).https://doi.org/10.1016/j.physleta.2012.12.019

    Article  Google Scholar 

  23. M. E. Rudd, R. D. DuBois, L. H. Toburen, et al., Phys. Rev. A 38, 3244 (1983).

    Article  Google Scholar 

  24. Yu. A. Belkova, N. V. Novikov, and Ya. A. Teplova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (3), 526 (2018). https://doi.org/10.1134/S1027451018030242

    Article  Google Scholar 

  25. T. Miyoshi, K. Noda, H. Sato, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 251, 79 (2006). https://doi.org/10.1016/j.nimb.2006.06.017

    Google Scholar 

  26. P. Sigmund, Particle Penetration and Radiation Effects, Vol. 2: Penetration of Atomic and Molecular Ions (Springer, 2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Novikov or Ya. A. Teplova.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, N.V., Teplova, Y.A. Description of the Charge–Energy Distribution of Fast Ions. J. Surf. Investig. 13, 289–295 (2019). https://doi.org/10.1134/S1027451019020344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019020344

Keywords:

Navigation