Skip to main content
Log in

Radiation resistance of wide-gap materials as exemplified by SiC nuclear radiation detectors

  • Experimental Instruments and Technique
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In wide-gap materials used in nuclear detectors, the polarization effect is typically observed when the concentration of radiation-induced defects is high. An emf arising in the detector is associated with long-term trapping of charge carries by deep radiation-induced levels (centers). The polarization kinetics and the polarization field strength are determined experimentally. The trapping efficiency can be controlled by varying the temperature, and a tradeoff can be reached at an “optimal” temperature between the generation current and the position of the deepest level, which has a negligible effect on charge losses via trapping. It is found that the ratio between the depth of this level and the bandgap is about 1/3 irrespective of the material but the optimal temperature is material-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Vinetskii and G. A. Kholodar’, Statistical Interaction of Electrons and Defects in Semiconductors (Naukova Dumka, Kiev, 1969) [in Russian].

    Google Scholar 

  2. A. A. Lebedev, A. I. Vienger, V. V. Kozlovski, D. V. Davydov, N. S. Savkina, and A. M. Strelchuk, J. Appl. Phys. 88, 6265 (2000).

    Article  ADS  Google Scholar 

  3. A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, S. Ferrero, and F. Giorgis, J. Appl. Phys. 98, 053706 (2005).

    Article  ADS  Google Scholar 

  4. A. M. Ivanov, A. A. Lebedev, and N. B. Strokan, Semiconductors 40, 1224 (2006).

    ADS  Google Scholar 

  5. A. M. Ivanov, N. B. Strokan, E. V. Bogdanova, and A. A. Lebedev, Semiconductors 41, 115 (2007).

    Article  ADS  Google Scholar 

  6. A. M. Ivanov, N. B. Strokan, and A. A. Lebedev, Semiconductors 42, 1117 (2008).

    Article  ADS  Google Scholar 

  7. A. M. Ivanov, N. B. Strokan, and A. A. Lebedev, Nucl. Instrum. Methods Phys. Res. A 597, 203 (2008).

    Article  ADS  Google Scholar 

  8. K. Hecht, Z. Physik. 77, 235 (1932).

    Article  ADS  Google Scholar 

  9. A. M. Ivanov, A. V. Sadokhin, N. B. Strokan, and A. A. Lebedev, Semiconductors 45, 1369 (2011).

    Article  ADS  Google Scholar 

  10. A. Castaldini, A. Cavallini, F. Fabbri, F. Nava, P. Errani, and V. Cindro, in Proceedings of the 8th Workshop, Prague, 2006. http://rd50.web.cern.ch/rd50/

  11. P. A. Ivanov, M. E. Levinshtein, J. W. Palmour, S. L. Rumyantsev, and R. Singh, Semicond. Sci. Technol. 15, 908 (2000).

    Article  ADS  Google Scholar 

  12. D. Katsunori and K. Tsunenobu, J. Appl. Phys. 100, 113728 (2006).

    Article  Google Scholar 

  13. V. A. Tikhomirova, O. P. Fedoseeva, and G. F. Kholuyanov, At. Energ. 34, 122 (1973).

    Article  Google Scholar 

  14. Rainer S. Wallny, Nucl. Instrum. Methods Phys. Res. A 582, 824 (2007).

    Article  ADS  Google Scholar 

  15. M. Cristinziani, Nucl. Instrum. Methods Phys. Res. A 623, 174 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ivanov.

Additional information

Original Russian Text © A.M. Ivanov, N.B. Strokan, A.A. Lebedev, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 4, pp. 137–141.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.M., Strokan, N.B. & Lebedev, A.A. Radiation resistance of wide-gap materials as exemplified by SiC nuclear radiation detectors. Tech. Phys. 57, 556–560 (2012). https://doi.org/10.1134/S1063784212040111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212040111

Keywords

Navigation