Skip to main content
Log in

Electrical and electroluminescent properties of InAsSb-Based LEDs (λ = 3.85–3.95 μm) in the temperature interval 20–200°C

  • Solid State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The temperature dependences of the electrical and electroluminescent properties of InAsSbP/InAsSb/InAsSbP heterostructure LEDs (λ ≈ 3.8−4.0 μm) are studied in the temperature interval 20–200°C. It is shown that the radiation power decreases with increasing temperature in a superexponential manner and that this decrease is associated primarily with a rise in the rate of Auger recombination. The position of the maximum in the radiation spectrum varies with temperature nonmonotonically, since radiative recombination is observed both in the active region and in the wide-gap layer. At room temperature, current through the heterostructure is tunneling current irrespective of the applied voltage polarity. As the temperature rises, either the thermal emission of charge carriers appears (direct bias) or the diffusion current becomes significant (reverse bias).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. N. Danilova, B. E. Zhurtanov, A. N. Imenkova, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 1281 (2005) [Semiconductors 39, 1235 (2005)].

    Google Scholar 

  2. M. Aidaraliev, N. V. Zotova, S. A. Karandashev, B. A. Matveev, M. A. Remennyi, N. M. Stus’, and G. N. Talalakin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 102 (2000) [Semiconductors 34, 104 (2000)].

    Google Scholar 

  3. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions (Pergamon, Oxford, 1974; Sov. Radio, Moscow, 1979).

    Google Scholar 

  4. V. V. Pasynkov and L. K. Chirkin, Semiconductor Devices (Vysshaya Shkola, Moscow, 1987) [in Russian].

    Google Scholar 

  5. A. A. Bergh and P. J. Dean, Light Emitting Diodes (Clarendon, Oxford, 1976; Mir, Moscow, 1979).

    Google Scholar 

  6. A. P. Astakhova, A. S. Golovin, N. D. Il’inskaya, K. V. Kalinina, S. S. Kizhaev, O. Yu. Serebrennikova, N. D. Stoyanov, Zs. J. Harvath, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 44, 278 (2010) [Semiconductors 44, 253 1369 (2010).

    Google Scholar 

  7. M. Aidaraliev, N. V. Zotova, S. A. Karandashev, B. A. Matveev, M. A. Remennyi, N. M. Stus’, and G. N. Talalakin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 1431 (2001) [Semiconductors 35, (2001).

    Google Scholar 

  8. W. J. Duncan, A. S. M. Ali, E. M. Marsh, and P. C. Spurdens, J. Cryst. Growth 143, 155 (1994).

    Article  ADS  Google Scholar 

  9. V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (PIYaF, St. Petersburg, 1997; North Holland, Amsterdam, 1991).

    Google Scholar 

  10. M. P. Mikhailova, in Handbook Series on Semiconductor Parameters, Ed. by M. Levinshtein, S. Rumyantsev, and M. Shur (World Sci., London, 1999), Vol. 2.

    Google Scholar 

  11. S. J. Adachi, Appl. Phys. 61, 4869 (1987).

    Article  Google Scholar 

  12. M. Aidaraliev, N. V. Zotova, S. A. Karandashev, B. A. Matveev, M. A. Remennyi, N. M. Stus, and G. N. Talalakin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35, 619 (2001) [Semiconductors 35, 598 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Petukhov.

Additional information

Original Russian Text © A.A. Petukhov, S.S. Kizhaev, S.S. Molchanov, N.D. Stoyanov, Yu.P. Yakovlev, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 1, pp. 73–76.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petukhov, A.A., Kizhaev, S.S., Molchanov, S.S. et al. Electrical and electroluminescent properties of InAsSb-Based LEDs (λ = 3.85–3.95 μm) in the temperature interval 20–200°C. Tech. Phys. 57, 69–73 (2012). https://doi.org/10.1134/S1063784212010203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212010203

Keywords

Navigation