Skip to main content
Log in

Method for determining the tritium concentration using the effects of dissociation of molecular beams of hydrogen isotopes on thin carbon films

  • Electron and Ion Beams, Accelerators
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Physical foundations of a new method for mass-spectrometric determination of tritium concentration in hydrogen-containing media, which is based on the effect of dissociation of molecular ions of hydrogen isotopes passing through thin carbon films, are formulated. The effects accompanying the interaction of particles with a solid (angular scattering, change in the charge state, energy losses in protons, deuterons, and tritons) are analyzed. The corresponding theoretical and experimental data indicate that the proposed technology can be implemented in practice for a comparatively low particle energy of ∼10 keV/nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Downard, Mass Spectrometry: A Foundation Course (Royal Society of Chemistry, UK, 2004).

    Google Scholar 

  2. V. A. Kurnaev, “Small-Size Devices for Mass Analysis of Light Ion Beams”, in Collection of Scientific Works: Methods for Diagnostic and Energy Recuperation of Discharge Particle Beams (Energoatomizdat, Moscow, 1987), pp. 51–59.

    Google Scholar 

  3. E. M. Yakushev and L. M. Nazarenko, Kazakh. Patent No. 8046 (March 12, 1999).

  4. V. A. Kurnaev and V. E. Tritolii, RF Patent No. 2001464 S1.

  5. V. A. Kurnaev and V. E. Tritolii, Fiz. Plazmy 18, 4 (1992) [Sov. J. Plasma Phys. 18, 114 (1992)].

    Google Scholar 

  6. E. A. Gridneva and V. A. Kurnaev, Patent No. 2272334 (June 15, 2004).

  7. N. U. Aldiyarov, V. S. Zhdanov, A. G. Mit, L. M. Nazarenko, and E. M. Yakushev, in Proceedings of the 6th International Conference on Nuclear and Radiation Physics, Almaty, 2007, p. 455.

  8. M. F. Zhukov and V. Ya. Smolyakov, Electric-Arc Gas Heaters (Plasmatrons) (Nauka, Novosibirsk, 1973) [in Russian].

    Google Scholar 

  9. A. T. Forrester, Large Ion Beams: Fundamentals of Generation and Propagation (Wiley, New York, 1988; Mir, Moscow, 1992).

    Google Scholar 

  10. Yu. V. Gott, Interactions of Particle with Matter in Plasma Research (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  11. Yu. V. Gott, V. A. Kurnaev, and O. L. Vaisberg, Corpuskular Diagnostic of Laboratory and Space Plasma, Ed. by V. A. Kurnaev (MIFI, Moscow, 2008) [in Russian].

    Google Scholar 

  12. P. Yu. Babenko, S. S. Kozlovskii, V. I. Afanas’ev, M. I. Mironov, S. Ya. Petrov, A. V. Khudoleev, and F. V. Chernyshev, Pis’ma Zh. Tekh. Fiz. 27(19), 44 (2001) [Tech. Phys. Lett 27, 821 (2001)].

    Google Scholar 

  13. G. D. Ved’manov, Yu. G. Lazarov, and V. I. Radchenko, Zh. Tekh. Fiz. 79(2), 81 (2000) [Tech. Phys. 45, 221 (2000)].

    Google Scholar 

  14. J. Golovehenko and E. Laegsgaerd, Phys. Rev. A 9, 1215 (1974).

    Article  ADS  Google Scholar 

  15. Donald S. Gemmell, Nucl. Instrum. Methods 132, 61 (1976).

    Article  ADS  Google Scholar 

  16. N. N. Koborov, A. I. Kuzovlev, V. F. Kurnaev, V. S. Remizovich, and A. A. Trifonov, Nucl. Instrum. Methods Phys. Res. B 129, 5 (1997).

    Article  ADS  Google Scholar 

  17. Experimental Nuclear Physics, Ed. by Serge (Wiley, New York, 1953–1959; Inostrannaya Literatura, Moscow, 1955), pp. 143–172.

    Google Scholar 

  18. G. I. Zhabrev, V. A. Kurnaev, and V. G. Tel’kovskii, in Proceedings of the 2nd All-Union Conference on Ion Interaction with Surface, Moscow, 1972, Vol. 1.

  19. V. A. Kurnaev, Plasma Interaction with Surface (MIFI, Moscow, 2002) [in Russian].

    Google Scholar 

  20. Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976), p. 954 [in Russian].

    Google Scholar 

  21. V. A. Kurnaev, Zh. Tekh. Fiz. 51, 2148 (1981) [Sov. Phys. Tech. Phys. 26, 1257 (1981)].

    Google Scholar 

  22. I. A. Abroyan, A. N. Andronov, and A. I. Titov, Physical Basis of Electron and Ion Technologies (Vysshaya Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  23. J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, 8 (1954).

    MathSciNet  Google Scholar 

  24. W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 1991; Mir, Moscow, 1995).

    Book  Google Scholar 

  25. N. N. Koborov, A. I. Kuzovlev, V. A. Kurnaev, and V. S. Remizovich, Zh. Tekh. Fiz. 67(5), 81 (1997) [Tech. Phys. 42 523 (1997)].

    Google Scholar 

  26. N. R. Arista, et al., Phys. Rev. A 62, 1261 (2000).

    Google Scholar 

  27. E. A. Gridneva, V. A. Kurnaev, N. N. Trifonov, and S. K. Zhdanov, Pis’ma Zh. Eksp. Teor. Fiz. 77, 15 (2003) [JETP Lett. 50, 12 (2003)].

    Google Scholar 

  28. K. A. Moshkunov, V. A. Kurnaev, D. N. Sinel’nikov, and S. V. Smirnov, Poverkhnost’: Rentgenovskie, Sinkhrotronnye, Neitron. Issled., No. 3, 3 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kurnaev.

Additional information

Original Russian Text © N.U. Aldiyarov, E.A. Gridneva, N.N. Koborov, V.A. Kurnaev, A.G. Mit’, L.M. Nazarenko, E.M. Yakushev, 2011, published in Zhurnal Tekhnicheskoĭ Fiziki, 2011, Vol. 81, No. 10, pp. 60–67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldiyarov, N.U., Gridneva, E.A., Koborov, N.N. et al. Method for determining the tritium concentration using the effects of dissociation of molecular beams of hydrogen isotopes on thin carbon films. Tech. Phys. 56, 1439–1446 (2011). https://doi.org/10.1134/S1063784211100021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784211100021

Keywords

Navigation