Skip to main content
Log in

Melting heat of a nanoparticle

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Expressions for the melting point (T m ), freezing temperature (T N < T m ), entropy change per atom (Δs), latent heat (Δh = T m Δs), and volume change (Δv) for the solid-liquid phase transition are derived from a model of a nanocrystal in the form of a parallelepiped with a variable shape of the surface. These quantities are studied as a function of the number of atoms (N) and the shape of the nanoparticle. Calculations carried out for copper nanoparticles show good agreement with the results of computational experiments. It is shown that functions Δs, Δh, and Δv vanish in a certain range of cluster dimension N 0 and a hysteresis between the melting point and freezing temperature disappears, T N (N 0) = T m (N 0). In such a cluster, the phases become physically identical. For nanocopper, this dimension falls into the range N 0 = 49–309 and grows when the shape of the nanoparticle deviates from the energetically most favorable one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Makarov, Usp. Fiz. Nauk 180, 185 (2010) [Phys. Usp. 53, 179 (2010)].

    Article  Google Scholar 

  2. S. L. Gafner, L. V. Redel’, and Ya. Ya. Gafner, Zh. Eksp. Teor. Fiz. 135, 899 (2009) [JETP 108, 789 (2009)].

    Google Scholar 

  3. V. M. Glazov and A.R. Regel’, Periodic Law and Physical Properties of Electronic Melts (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  4. M. N. Magomedov, Pis’ma Zh. Tekh. Fiz. 35(14), 67 (2009) [Tech. Phys. Lett. 35, 670 (2009)].

    Google Scholar 

  5. M. N. Magomedov, Fiz. Tverd. Tela (St. Petersburg) 46, 924 (2004) [Phys. Solid State 46, 354 (2004)].

    Google Scholar 

  6. M. N. Magomedov, Pis’ma Zh. Tekh. Fiz. 33(5), 62 (2007) [Tech. Phys. Lett. 33, 212 (2007)].

    Google Scholar 

  7. M. N. Magomedov, Studying of Interatomic Interaction of Vacancy Formation and Self-Diffusion in Crystals (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  8. M. N. Magomedov, Zh Tekh. Fiz. 78(8), 93 (2008) [Tech. Phys. 53, 1051 (2008)].

    Google Scholar 

  9. F. Delogy, Phys. Rev. B 72, 205418 (2005).

    Article  ADS  Google Scholar 

  10. M. N. Magomedov, Zh Tekh. Fiz. 80(9), 141 (2010) [Tech. Phys. 55, 1373 (2010)].

    Google Scholar 

  11. M. N. Magomedov, Teplofiz. Vys. Temp. 30, 470 (1992); Teplofiz. Vys. Temp. 30, 836 (1992).

    Google Scholar 

  12. M. N. Magomedov, Pis’ma Zh. Tekh. Fiz. 28(3), 73 (2002) [Tech. Phys. Lett. 28, 116 (2002)].

    MathSciNet  Google Scholar 

  13. U. M. Kulish, in Physical Chemistry of Surface Phenomena in Melts (Naukova Dumka, Kiev, 1971), pp. 46–51.

    Google Scholar 

  14. V. M. Samsonov, Izv. Ross. Akad. Nauk, Ser. Fiz. 69, 1036 (2005).

    MathSciNet  Google Scholar 

  15. P. M. Valov and V. I. Leiman, Fiz. Tverd. Tela (St. Petersburg) 41, 310 (1999) [Phys. Solid State 41, 278 (1999)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Magomedov.

Additional information

Original Russian Text © M.N. Magomedov, 2011, published in Zhurnal Tekhnicheskoĭ Fiziki, 2011, Vol. 81, No. 9, pp. 57–62.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magomedov, M.N. Melting heat of a nanoparticle. Tech. Phys. 56, 1277–1282 (2011). https://doi.org/10.1134/S106378421109012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421109012X

Keywords

Navigation