Skip to main content
Log in

Size dependence of the melting temperature of metallic nanoclusters from the viewpoint of the thermodynamic theory of similarity

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The generalized Thomson formula T m = T (∞) m (1-δ)R for the melting point of small objects T m has been analyzed from the viewpoint of the thermodynamic theory of similarity, where R is the radius of the particle and T (∞) m is the melting point of the corresponding large crystal. According to this formula, the parameter δ corresponds to the value of the radius of the T m (R -1) particle obtained by the linear extrapolation of the dependence to the melting point of the particle equal to 0 K. It has been shown that δ = αδ0, where α is the factor of the asphericity of the particle (shape factor). In turn, the redefined characteristic length δ0 is expressed through the interphase tension σ sl at the boundary of the crystal with its own melt, the specific volume of the solid phase v s and the macroscopic value of the heat of fusion λ0 = 2σ sl v s . If we go from the reduced radius of the particle R/δ to the redefined reduced radius R/r 1 or R/d, where r 1 is the radius of the first coordination shell and dr 1 is the effective atomic diameter, then the simplex δ/r 1 or δ/d will play the role of the characteristic criterion of thermodynamic similarity. At a given value of α, this role will be played by the simplex Estimates of the parameters δ0 and δ0/d have been carried out for ten metals with different lattice types. It has been shown that the values of the characteristic length δ0 are close to 1 nm and that the simplex δ0/d is close to unity. In turn, the calculated values of the parameter δ agree on the order of magnitude with existing experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Filippov, Similarity of the Properties of Substances (Izd-vo Mosk. Gos. Univ., Moscow, 1978).

    Google Scholar 

  2. L. M. Shcherbakov, V. M. Samsonov, V. A. Lavrov, and O. A. Rybal’chenko, “Principles of similarity in thermodynamics of microheterogeneous systems: 1. Disperse systems,” Colloid. J. 61, 120–125 (1999).

    Google Scholar 

  3. H. Hori, T. Teranishi, M. Taki, S. Yamada, M. Miyake, and Y. Yamamoto, “Magnetic properties of nano-particles of Au, Pd and Pd/Ni alloys,” J. Magn. Magn. Mater. 226–230, 1910–1911 (2001).

    Article  Google Scholar 

  4. Yu. I. Petrov, Physics of Small Particles (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  5. L. M. Alabushev, V. B. Geronimus, L. M. Minkevich, and B. A. Shekhovtsov, Theories of Resemblance and Dimension. Simulation (Vysshaya Shkola, Moscow, 1968) [in Russian].

    Google Scholar 

  6. W. Thomson, “The equilibrium of vapor at a curved surface of liquid,” Philos. Mag. 42, 448–452 (1871).

    Google Scholar 

  7. K. F. Peters, J. B. Cohen, and Y.-W. Chung, “Melting of Pb nanocrystals,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, 13430–13438 (1998).

    Article  Google Scholar 

  8. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  9. N. Eustathopoulos, “Energetics of solid/liquid interfaces of metals and alloys,” Int. Met. Rev. 28, 189–210 (1983).

    Article  Google Scholar 

  10. M. A. Shebzukhova, Z. A. Shebzukhov, and A. A. Shebzukhov, “Interfacial tension of a crystalline nanoparticle in the liquid mother phase in a one-component metallic system.” Phys. Solid State 54, 185–193 (2012).

  11. B. M. Patterson, K. M. Unruh, and S. I. Shah, “Melting and freezing behavior of ultrafine granular metal films,” Nanostruct. Mater. 1, 65–70 (1992).

    Article  Google Scholar 

  12. W. H. Qi and M. P. Wang, “Size and shape dependent lattice parameters of metallic nanoparticles,” Mater. Chem. Phys. 88, 280–284 (2004).

    Article  Google Scholar 

  13. J. H. Rose, J. Ferrente, and J. R. Smith, “Universal binding energy curves for metals and bimetallic interfaces,” Phys. Rev. Lett. 47, 675–678 (1981).

    Article  Google Scholar 

  14. F. Guinea, J. H. Rose, J. R. Smith, and J. Ferrante, “Scaling relations in the equation of state, thermal expansion, and melting of metals,” Appl. Phys. Lett. 44, 53–55 (1984).

    Article  Google Scholar 

  15. P. E. Strebeiko, “Effect of refinement on temperature of transition,” Doctoral Dissertation (Inst. Obshch. Neorg. Khim. Akad. Nauk SSSR, Moscow, 1939).

    Google Scholar 

  16. L. M. Shcherbakov, “On the heat of sublimation of small crystals,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 77–83 (1959).

    Google Scholar 

  17. Skripov, V. P. and Koverda, V.P., Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984), pp. 104–107.

    Google Scholar 

  18. V. P. Koverda and V. N. Skokov, “Effect of fluctuations and nonequilibrium faceting on the melting of small metallic crystals,” Fiz. Met. Metalloved. 51, 1238–1244 (1981).

    Google Scholar 

  19. M. Blackman and J. R. Sambles, “Melting of very small particles during evaporation at constant temperature,” Nature 226, 938–947 (1970).

    Article  Google Scholar 

  20. P. Buffat and J. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).

    Article  Google Scholar 

  21. V. N. Skokov, V. P. Koverda, and V. P. Skripov, “Liquid–crystal phase transition in gallium island films,” Fiz. Tverd. Tela 24, 562–567 (1982).

    Google Scholar 

  22. V. P. Koverda, V. N. Skokov, and V. P. Skripov, “Crystallization of small particles in island films of tin, lead, and bismuth,” Kristallografiya 27, 358–362 (1982).

    Google Scholar 

  23. A Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991), pp. 358–362 [in Russian].

  24. I. D. Morokhov, L. I. Trusov, and V. N. Lapovok, Physical Phenomena in Ultradispersed Media (Energoatomizdat, Moscow, 1984).

    Google Scholar 

  25. S. L. Gafner, L. V. Redel’, Zh. V. Goloven’ko, Yu. Ya. Gafner, V. M. Samsonov, and S. S. Kharechkin, “Structural transitions in small nickel clusters,” J. Exp. Theor. Phys. Lett. 89, 364–369 (2009).

    Article  Google Scholar 

  26. F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B: Condens. Matter 40, 22–33 (1993).

    Article  Google Scholar 

  27. N. N. Medvedev, Voronoi–Delaunay Method in Study of the Structure of Noncrystalline Systes (Ross. Akad. Nauk, Sibir. Otd., Novosibirsk, 2000) [in Russian].

    Google Scholar 

  28. W. Polak and A. Patrykiejew, Local structures in medium-sized Lennard-Jones clusters: Monte Carlo simulations,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 115402 (2003).

    Article  Google Scholar 

  29. V. M. Samsonov, S. S. Kharechkin, and R. P. Barbasov, “Comparative molecular dynamics study of nanocrystallization processes in one-component and binary systems,” Bull. Russ. Acad. Sci.: Phys. 70, 1143–1147 (2006).

    Google Scholar 

  30. S. Sugano and H. Koizumi, Microcluster Physics (Springer-Verlag, Heidelberg, 1998).

    Book  Google Scholar 

  31. V. I. Nizhenko, “Density of liquid metals and its temperature dependence,” in Methods of Study and Properties of Contacting Phase Interfaces (Naukova Dumka, Kiev, 1977), pp. 125–163 [in Russian].

    Google Scholar 

  32. A. B. Alchagirov, B. B. Alchagirov, T. M. Taova, and K. B. Khokonov, “Surface energy and surface tension of solid and liquid metals. Recommended Values,” Trans. of Joining and Welding Res. Inst. 30, 287–291 (2001).

    Google Scholar 

  33. H. Y. Kai, “Nanocrystalline materials. A study of their preparation and characterization,” PD Thesis (Univ. van Amsterdam, Netherlands, Amsterdam, 1993).

    Google Scholar 

  34. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976; Nauka, Moscow, 1978).

    Google Scholar 

  35. A. Gordon and R. Ford, in The Chemist’s Companion, A Handbook of Practical Data. Techniques and References (Wiley, New York, 1972; Mir, Moscow, 1976).

    Google Scholar 

  36. K. Dick, T. Dhanasekaran, Z. Xhang, and D. Meisel, “Size-dependent melting of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124, 2312–2317 (2002).

    Article  Google Scholar 

  37. T. B. David, Y. Lereah, G. Deutsher, R. Kofman, and P. Cheyssac, “Solid–liquid transition in ultra-fine lead particles,” Philos. Mag. A 71, 1135–1143 (1995).

    Article  Google Scholar 

  38. R. Kofman, P. Cheyssac, Y. Lereach, and A. Stella, “Melting of clusters approaching 0D,” Eur. Phys. J. D 9, 441–444 (1999).

    Article  Google Scholar 

  39. V. P. Skripov, V. P. Koverda, and V. N. Skokov, “Size effect on melting of small particles,” Phys. Status Solidi 66, 109–118 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samsonov.

Additional information

Original Russian Text © V.M. Samsonov, S.A. Vasilyev, A.G. Bembel, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 8, pp. 775–781.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, V.M., Vasilyev, S.A. & Bembel, A.G. Size dependence of the melting temperature of metallic nanoclusters from the viewpoint of the thermodynamic theory of similarity. Phys. Metals Metallogr. 117, 749–755 (2016). https://doi.org/10.1134/S0031918X16080135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16080135

Keywords

Navigation