Advertisement

Technical Physics

, Volume 55, Issue 2, pp 204–209 | Cite as

On the capillary stability of a cylindrical dielectric liquid jet in a longitudinal electrostatic field

  • S. O. ShiryaevaEmail author
Gases and Liquids

Abstract

A dispersion relation is derived for capillary waves with arbitrary symmetry (with arbitrary azimuthal numbers) on the surface of a cylindrical jet of an ideal incompressible dielectric liquid subjected to an electrostatic field aligned with the symmetry axis of the jet. It is shown that only long axisymmetric waves can experience capillary instability in such a system. The wavenumber range into which unstable waves fall begins with a zero value, and its width depends on the permittivities of the liquid and ambient and on the electrostatic field strength squared. As the field strength grows, the wavenumber range for unstable waves rapidly narrows and the capillary instability growth rate, as well as the wavenumber of the wave with the greatest growth rate, decreases.

Keywords

Electrostatic Field Capillary Wave Instability Growth Rate Unstable Wave Capillary Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Strutt (Lord Rayleigh), Proc. London Math. Soc. 10, 4 (1878).CrossRefGoogle Scholar
  2. 2.
    J. W. Strutt (Lord Rayleigh), The Theory of Sound (Dover, New York, 1945; Gostekhizdat, Moscow, 1955), Vol. 2.zbMATHGoogle Scholar
  3. 3.
    V. M. Entov and A. L. Yarin, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 17, 112 (1984).Google Scholar
  4. 4.
    E. V. Ametistov, V. V. Blazhenkov, A. K. Gorodov, et al., Monodispersion of Matter: Principles and Applications, Ed. by V. A. Grigor’ev (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  5. 5.
    S. O. Shiryaeva, A. I. Grigor’ev, and M. V. Volkova, Spontaneous Capillary Disintegration of Charged Jets (Yaroslavsk. Gos. Univ., Yaroslavl’, 2007) [in Russian].Google Scholar
  6. 6.
    J. Eggers and E. Willermaux, Rep. Prog. Phys. 71, 036601 (2008).CrossRefADSGoogle Scholar
  7. 7.
    Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 6, 348 (1936).Google Scholar
  8. 8.
    N. K. Nayyar and G. S. Murty, Proc. Phys. Soc. 75, 369 (1960).CrossRefGoogle Scholar
  9. 9.
    G. A. Glonti, Zh. Eksp. Teor. Fiz. 34, 1328 (1958) [Sov. Phys. JETP 7, (1958)].Google Scholar
  10. 10.
    R. J. Raco, AIAA J. 6, 979 (1968).CrossRefADSGoogle Scholar
  11. 11.
    D. A. Saville, J. Fluid. Mech. 48, 815 (1971).zbMATHCrossRefADSGoogle Scholar
  12. 12.
    A. J. Mestel, J. Fluid. Mech. 312, 311 (1996).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    A. A. Shutov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 52 (2006).MathSciNetGoogle Scholar
  14. 14.
    D. F. Belonozhko and A. I. Grigor’ev, Zh. Tekh. Fiz. 74(11), 22 (2004) [Tech. Phys. 49, 1422 (2004)].Google Scholar
  15. 15.
    V. G. Levich, Physicochemical Hydrodynamics (Fizmatgiz, Moscow, 1959; Prentice Hall, Englewood Cliffs, 1962).Google Scholar
  16. 16.
    M. Cloupeau and B. Prunet Foch, J. Electrost. 25, 165 (1990).CrossRefGoogle Scholar
  17. 17.
    A. Jaworek and A. Krupa, J. Aerosol Sci. 30, 873 (1999).CrossRefGoogle Scholar
  18. 18.
    S. O. Shiryaeva and A. I. Grigor’ev, J. Electrost. 34, 51 (1995).CrossRefGoogle Scholar
  19. 19.
    S. O. Shiryaeva, A. I. Grigor’ev, and A. A. Svyatchenko, RF Preprint No. 25, IMI RAN (Institute of Microelectronics and Informatics RAN, Yaroslavl’, 1993).Google Scholar
  20. 20.
    A. I. Grigor’ev, Zh. Tekh. Fiz. 77(2), 31 (2007) [Tech. Phys. 52, 173 (2007)].MathSciNetGoogle Scholar
  21. 21.
    A. I. Grigor’ev and D. M. Pozharitskii, Zh. Tekh. Fiz. 78(10), 40 (2008) [Tech. Phys. 53, 1289 (2008)].Google Scholar
  22. 22.
    A. F. Aleksandrov, V. L. Bychkov, L. P. Grachev, et al., Zh. Tekh. Fiz. 76(3), 38 (2006) [Tech. Phys. 51, 330 (2006)].Google Scholar
  23. 23.
    A. I. Grigor’ev and S. O. Shiryaeva, Zh. Tekh. Fiz. 62(12), 9 (1992) [Sov. Phys. Tech. Phys. 37, 1136 (1992)].Google Scholar
  24. 24.
    N. B. Zolotoi, G. V. Karpov, and V. E. Skurat, Zh. Tekh. Fiz. 58, 315 (1988) [Sov. Phys. Tech. Phys. 33, 193 (1988)].Google Scholar
  25. 25.
    S. O. Shiryaeva and A. I. Grigor’ev, Zh. Tekh. Fiz. 63(8), 162 (1993) [Tech. Phys. 38, 715 (1993)].Google Scholar
  26. 26.
    S. O. Shiryaeva, A. I. Grigor’ev, T. V. Levchuk, and M. V. Rybakova, Zh. Tekh. Fiz. 73(5), 5 (2003) [Tech. Phys. 48, 527 (2003)].Google Scholar
  27. 27.
    S. O. Shiryaeva, A. I. Grigor’ev, and T. V. Levchuk, Zh. Tekh. Fiz. 73(11), 22 (2003) [Tech. Phys. 48, 1380 (2003)].Google Scholar
  28. 28.
    A. I. Grigor’ev, N. V. Voronina, and S. O. Shiryaeva, Zh. Tekh. Fiz. 78(2), 33 (2008) [Tech. Phys. 53, 173 (2008)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Demidov State UniversityYaroslavlRussia

Personalised recommendations