Skip to main content
Log in

On the stability of capillary waves on the surface of a space-charged dielectric liquid jet moving in a material medium

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have derived and analyzed the dispersion equation for capillary waves with an arbitrary symmetry (with arbitrary azimuthal numbers) on the surface of a space-charged cylindrical jet of an ideal incompressible dielectric liquid moving relative to an ideal incompressible dielectric medium. It has been proved that the existence of a tangential jump of the velocity field on the jet surface leads to a periodic Kelvin–Helmholtz- type instability at the interface between the media and plays a destabilizing role. The wavenumber ranges of unstable waves and the instability increments depend on the squared velocity of the relative motion and increase with the velocity. With increasing volume charge density, the critical value of the velocity for the emergence of instability decreases. The reduction of the permittivity of the liquid in the jet or an increase in the permittivity of the medium narrows the regions of instability and leads to an increase in the increments. The wavenumber of the most unstable wave increases in accordance with a power law upon an increase in the volume charge density and velocity of the jet. The variations in the permittivities of the jet and the medium produce opposite effects on the wavenumber of the most unstable wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Entov and A. L. Yarin, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 17, 112 (1984).

    Google Scholar 

  2. J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601 (2008).

    Article  ADS  Google Scholar 

  3. A. I. Zhakin, Phys.-Usp. 56, 141 (2013).

    Article  ADS  Google Scholar 

  4. S. O. Shiryaeva and A. I. Grigor’ev, Surf. Eng. Appl. Electrochem. 50, 395 (2014).

  5. M. Cloupeau and B. Prunet Foch, J. Electrost. 22, 135 (1989).

    Article  Google Scholar 

  6. K. Tang and A. Gomes, J. Colloid Interface Sci. 184, 500 (1996).

    Article  ADS  Google Scholar 

  7. A. Jaworek and A. Krupa, J. Aerosol Sci. 30, 873 (1999).

    Article  Google Scholar 

  8. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutlege, Polymer 42, 09955 (2001).

    Article  Google Scholar 

  9. T. Funada and D. D. Joseph, Int. J. Multiphase Flow 30, 1279 (2004).

    Article  Google Scholar 

  10. G. Xiaohua, S. Xue, et al., Int. J. Electrochem. Sci. 9, 8045 (2014).

    Google Scholar 

  11. W. Thomson, Philos. Mag., Ser. 4 42, 368 (1871).

    Google Scholar 

  12. J. W. Strutt, Philos. Mag., Ser. 5 34, 177 (1892).

    Article  Google Scholar 

  13. A. B. Basset, Am. J. Math. 16, 93 (1894).

    Article  Google Scholar 

  14. A. I. Grigor’ev, S. O. Shiryaeva, D. O. Kornienko, and M. V. Volkova, Surf. Eng. Appl. Electrochem. 46, 309 (2010).

    Article  Google Scholar 

  15. A. I. Grigor’ev, S. O. Shiryaeva, and N. A. Petrushov, Tech. Phys. 56, 171 (2011).

    Article  Google Scholar 

  16. S. O. Shiryaeva and N. A. Petrushov, in Proc. Int. Conf. “XIII Khariton Topical Scientific Readings,” Sarov, 2011, p. 570.

    Google Scholar 

  17. A. I. Grigor’ev, N. A. Petrushov, and S. O. Shiryaeva, Fluid Dyn. 47, 58 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. O. Shiryaeva, N. A. Petrushov, and A. I. Grigor’ev, Tech. Phys. 58, 664 (2013).

    Article  Google Scholar 

  19. S. O. Shiryaeva, Fluid Dyn. 45, 391 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  20. Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 6, 348 (1936).

    Google Scholar 

  21. A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).

  22. M. Abramovits and I. Stigan, Handbook on Special Functions (Nauka, Moscow, 1979).

  23. V. G. Levich, Physicochemical Hydrodynamics (Fizmatgiz, Moscow, 1959).

  24. Ya. Yu. Akhadov, Dielectric Parameters of Pure Liquids (Mosk. Aviats. Inst., Moscow, 1999).

  25. S. O. Shiryaeva, A. I. Grigor’ev, and A. A. Svyatchenko, Preptint No. 25, IM RAN (Microelectronics Inst., Russ. Acad. Sci., Yaroslavl, 1993).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Shiryaeva.

Additional information

Original Russian Text © S.O. Shiryaeva, A.I. Grigor’ev, G.E. Mikheev, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 8, pp. 1151–1158.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaeva, S.O., Grigor’ev, A.I. & Mikheev, G.E. On the stability of capillary waves on the surface of a space-charged dielectric liquid jet moving in a material medium. Tech. Phys. 62, 1163–1170 (2017). https://doi.org/10.1134/S1063784217080254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217080254

Navigation