Skip to main content
Log in

Computation of localized modes in a defect-containing photonic crystal by the method of periodic continuation of solution

  • Optics, Quantum Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The applicability of the method of periodic continuation of solution for computing the spatial distribution of an electromagnetic field in a photonic crystal with a defect is analyzed. The accuracy of the method is estimated. The crystal eigenmodes are classified, and the method is shown to be applicable only for states localized on the defect. The results of numerical calculations based on expansion of electromagnetic field in plane waves are presented, and the details of the expansion method are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).

    MATH  Google Scholar 

  2. Optical Properties of Photonic Crystals, Ed. by K. Sakoda (Springer, Berlin, 2001).

    Google Scholar 

  3. E. Yablonovitch, Sci. Am. 285(12), 47 (2001).

    Google Scholar 

  4. R. Meade, A. Devenyi, J. D. Joannopoulos, et al., J. Appl. Phys. 75, 4753 (1994).

    Article  ADS  Google Scholar 

  5. J. Vuckovic, M. Loncar, H. Mabuchi, et al., IEEE J. Quantum Electron. 38, 850 (2002).

    Article  ADS  Google Scholar 

  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, et al., Phys. Rev.Lett. 80, 960 (1998).

    Article  ADS  Google Scholar 

  7. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, et al., Phys. Rev. B 59, 15 882 (1999).

    Google Scholar 

  8. S. H. Kim, S. K. Kim, and Y. H. Lee, Phys. Rev. B 73, 235 117 (2006).

  9. M. Boroditsky, T. F. Krauss, E. Yablonovitch, et al., Appl. Phys. Lett. 75, 1036 (1999).

    Article  ADS  Google Scholar 

  10. A. S. Spitsyn and G. F. Glinskii, Izv. St.-Petersburgsk. Elektrotekh. Univ., No. 1, 7 (2006).

  11. W. Bogaerts, Nanophotonic Waveguides and Photonic Crystals in Silicon-Insulator, PhD Thesis (Gent Univ., Gent, 2004).

    Google Scholar 

  12. A. Talneau, M. Mulot, S. Anand, et al., Photonics Nanostruct. 2, 1 (2004).

    Article  ADS  Google Scholar 

  13. Photonic Crystals: Physics, Fabrication and Application, Ed. by K. Inoue and K. Ohtaka (Springer, Berlin, 2004).

    Google Scholar 

  14. G. Guida, T. Brillat, A. Ammouche, et al., J. Appl. Phys. 88, 4491 (2000).

    Article  ADS  Google Scholar 

  15. M. M. Sigalas, C. M. Soukoulis, K. M. Ho, et al., Phys. Rev. B 59, 12 767 (1999).

  16. S. F. Mingaleev and K. Busch, Opt. Lett. 28, 619 (2003).

    Article  ADS  Google Scholar 

  17. K. Busch, S. F. Mingaleev, M. Schillinger, et al., J. Phys.: Condens. Matter. 15, 1233 (2003).

    Article  ADS  Google Scholar 

  18. W. J. Kim and J. D. O’Brien, J. Opt. Soc. Am. B 21, 289 (2004).

    Article  ADS  Google Scholar 

  19. E. Istrate, M. Allard, and E. H. Sargent, Phys. Rev. B 65, 125 318 (2002).

    Google Scholar 

  20. M. Szpulak, E. Serebryannikov, A. Zheltikov, et al., Opt. Express 14, 5699 (2006).

    Article  ADS  Google Scholar 

  21. J. B. Pendry, J. Phys.: Condens. Matter. 8, 1085 (1996).

    Article  ADS  Google Scholar 

  22. K. Varis, Computational Methods for Finite Thickness Photonic Crystals, PhD Thesis (Helsinki Univ. Technol., Espoo, 2005).

    Google Scholar 

  23. Y. S. Kim, Designing of Metallic Photonic Structures and Applications, PhD Thesis (Iowa State Univ., Ames, 2006).

    Google Scholar 

  24. O. Madelung, Introduction to Solid State Theory (Springer-Verlag, Berlin, 1978; Nauka, Moscow, 1985), Chap. 1, p.21.

    Google Scholar 

  25. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  26. M. L. Povinelli, Characteristics of Defect Modes, Slow Light, and Disorder in Photonic Crystals, PhD Thesis (Massachusetts Institute of Technology, Cambridge, 2004).

    Google Scholar 

  27. H. P. Uranus, Guiding Light by and Beyond the Total Internal Reflection Mechanism, PhD Thesis (University of Twente, Enschede, 2005).

    Google Scholar 

  28. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975; Inostrannaya Literatura, Moscow, 1965).

    MATH  Google Scholar 

  29. G. M. Fikhtengolts, Course in Differential and Integral Calculus (Nauka, Moscow, 1969), Vol. 3 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Spitsyn.

Additional information

Original Russian Text © A.S. Spitsyn, G.F. Glinskii, 2008, published in Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 78, No. 5, pp. 71–77.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitsyn, A.S., Glinskii, G.F. Computation of localized modes in a defect-containing photonic crystal by the method of periodic continuation of solution. Tech. Phys. 53, 602–608 (2008). https://doi.org/10.1134/S1063784208050125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784208050125

PACS numbers

Navigation