Skip to main content
Log in

Localized states and their stability in an anharmonic medium with a nonlinear defect

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A comprehensive analysis of soliton states localized near a plane defect (a defect layer) possessing nonlinear properties is carried out within a quasiclassical approach for different signs of nonlinearity of the medium and different characters of interaction of elementary excitations of the medium with the defect. A quantum interpretation is given to these nonlinear localized modes as a bound state of a large number of elementary excitations. The domains of existence of such states are determined, and their properties are analyzed as a function of the character of interaction of elementary excitations between each other and with the defect. A full analysis of the stability of all the localized states with respect to small perturbations of amplitude and phase is carried out analytically, and the frequency of small oscillations of the state localized on the defect is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Lifshitz, Nuovo Cimento, Suppl. 3, 716 (1956).

    Article  MathSciNet  Google Scholar 

  2. I. M. Lifshitz and A. M. Kosevich, Rep. Prog. Phys. 29, 217 (1966).

    Article  ADS  Google Scholar 

  3. Y. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, New York, 2003).

    Google Scholar 

  4. Nonlinearities in Periodic Structures and Metamaterials, Ed. by Yu. S. Kivshar’ and N. N. Rozanov (Nauka, Moscow, 2014) [in Russian].

  5. I. V. Gerasimchuk and A. S. Kovalev, JETP Lett. 85 (10), 488 (2007).

    Article  Google Scholar 

  6. I. V. Gerasimchuk and A. S. Kovalev, J. Phys.: Condens. Matter 13, L885 (2001).

    ADS  Google Scholar 

  7. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rep. 518, 1 (2012).

    Article  ADS  Google Scholar 

  8. D. A. Smirnova, I. V. Iorsh, I. V. Shadrivov, and Y. S. Kivshar, JETP Lett. 99 (8), 456 (2014).

    Article  ADS  Google Scholar 

  9. Y. Silberberg and G. I. Stegeman, Appl. Phys. Lett. 50, 801 (1987).

    Article  ADS  Google Scholar 

  10. D. R. Heatley, E. M. Wright, and G. I. Stegeman, Appl. Phys. Lett. 53, 172 (1988).

    Article  ADS  Google Scholar 

  11. J. J. Rhyne, D. A. Neumann, and J. A. Gotaas, Phys. Rev. B: Condens. Matter 36, 2294 (1987).

    Article  ADS  Google Scholar 

  12. L. Pintschovius, N. Pyka, and W. Reichardt, Physica B (Amsterdam) 174, 323 (1991).

    Article  ADS  Google Scholar 

  13. A. A. Stepanov, V. A. Pashchenko, and M. I. Kobets, Sov. J. Low Temp. Phys. 14 (5), 304 (1988).

    Google Scholar 

  14. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998).

    Article  ADS  Google Scholar 

  15. U. Peschel, R. Morandotti, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, Appl. Phys. Lett. 75, 1348 (1999).

    Article  ADS  Google Scholar 

  16. A. A. Stepanov and D. A. Yablonskii, Sov. J. Low Temp. Phys. 15 (2), 122 (1989).

    Google Scholar 

  17. D. Hennig, H. Gabriel, G. P. Tsironis, and M. Molina, Appl. Phys. Lett. 64, 2934 (1994).

    Article  ADS  Google Scholar 

  18. Q. Li, C. T. Chan, K. M. Ho, and C. M. Soukoulis, Phys. Rev. B: Condens. Matter 53, 15577 (1996).

    Article  ADS  Google Scholar 

  19. D. L. Mills and S. E. Trullinger, Phys. Rev. B: Condens. Matter 36, 947 (1987).

    Article  ADS  Google Scholar 

  20. A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 53, 1172 (1996).

    Article  Google Scholar 

  21. A. M. Kosevich and A. S. Kovalev, Sov. J. Low Temp. Phys. 1 (12), 742 (1975).

    Google Scholar 

  22. Yu. S. Kivshar and B. A. Malomed, J. Phys. A: Math. Gen. 21, 1553 (1988).

    Article  ADS  MATH  Google Scholar 

  23. M. M. Bogdan, I. V. Gerasimchuk, and A. S. Kovalev, Low Temp. Phys. 23 (2), 145 (1997).

    Article  ADS  Google Scholar 

  24. N. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 1020 (1973).

    Google Scholar 

  25. A. M. Kosevich and A. S. Kovalev, Introduction to the Nonlinear Physical Mechanics (Naukova Dumka, Kiev, 1989) [in Russian].

    MATH  Google Scholar 

  26. M. M. Bogdan and A. S. Kovalev, JETP Lett. 31 (4), 195 (1980).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gerasimchuk.

Additional information

Original Russian Text © I.V. Gerasimchuk, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 4, pp. 685–695.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimchuk, I.V. Localized states and their stability in an anharmonic medium with a nonlinear defect. J. Exp. Theor. Phys. 121, 596–605 (2015). https://doi.org/10.1134/S1063776115100076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115100076

Keywords

Navigation