Skip to main content
Log in

Low-temperature formation of thermal and electrodynamic states in Bi2Sr2CaCu2O8

  • Solids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The formation of thermal and electrodynamic states in Bi2Sr2CaCu2O8 under the condition of current input is studied. The analysis is carried out for partial and complete current penetration under the assumption that the superconductor is cooled down to liquid helium temperature at the zero time. When the current input is continuous, the temperature dependence of the Bi2Sr2CaCu2O8 specific heat influences the form of the I-V and I-T characteristics of the superconductor. This effect is observed at high electric fields when both stable and unstable states form. As a result, the nonstationary I-V characteristic of Bi2Sr2CaCu2O8 has the only branch the slope of which is positive and decreases with increasing temperature. Therefore, the higher the rate of current input, the more pronounced the decrease in the slope. It is concluded that one cannot find the current above which instability develops from the Bi2Sr2CaCu2O8 I-V characteristic if the current input is continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Newson, D. T. Ryan, M. N. Wilson, and H. Jones, IEEE Trans. Appl. Supercond. 12, 725 (2002).

    Article  Google Scholar 

  2. K. Watanabe, S. Awaji, and M. Motokawa, Physica B 329–333, 1487 (2003).

    Article  Google Scholar 

  3. R. H. Bellis and Y. Iwasa, Cryogenics 34, 129 (1994).

    Article  Google Scholar 

  4. V. R. Romanovskii, Zh. Tekh. Fiz. 70(5), 47 (2000) [Tech. Phys. 45, 1557 (2000)].

    Google Scholar 

  5. V. R. Romanovskii, Cryogenics 42, 29 (2002).

    Article  ADS  Google Scholar 

  6. V. R. Romanovskii, Zh. Tekh. Fiz. 73(1), 55 (2003) [Tech. Phys. 48, 52 (2003)].

    MathSciNet  Google Scholar 

  7. A. Junod, K. O. Wang, T. Tsukamoto, et al., Physica C 229, 209 (1994).

    Article  ADS  Google Scholar 

  8. P. F. Herrmann, C. Albrecht, J. Bock, et al., IEEE Trans. Appl. Supercond. 3, 876 (1993).

    Article  Google Scholar 

  9. M. Polak, I. Hlasnik, and L. Krempasky, Cryogenics 13, 702 (1973).

    Article  Google Scholar 

  10. S. S. Kalsi, D. Aized, B. Connor, et al., IEEE Trans. Appl. Supercond. 7, 971 (1997).

    Article  Google Scholar 

  11. H. Kumakura, H. Kitaguchi, K. Togano, et al., Cryogenics 38, 163 (1998).

    Article  Google Scholar 

  12. H. Kumakura, H. Kitaguchi, K. Togano, et al., Cryogenics 38, 639 (1998).

    Article  Google Scholar 

  13. T. Kiss, V. S. Vysotsky, H. Yuge, et al., Physica C 310, 372 (1998).

    Article  ADS  Google Scholar 

  14. A. L. Rakhmanov, V. S. Vysotsky, Yu. A. Ilyin, et al., Cryogenics 40, 19 (2000).

    Article  ADS  Google Scholar 

  15. G. Nishijima, S. Awaji, S. Murase, et al., IEEE Trans. Appl. Supercond. 12, 1155 (2002).

    Article  Google Scholar 

  16. G. Nishijima, S. Awaji, and K. Watanabe, IEEE Trans. Appl. Supercond. 13, 1576 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.A. Lavrov, V.K. Ozhogina, V.R. Romanovskii, 2008, published in Zhurnal Tekhnicheskoĭ Fiziki, 2008, Vol. 78, No. 4, pp. 76–81.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrov, N.A., Ozhogina, V.K. & Romanovskii, V.R. Low-temperature formation of thermal and electrodynamic states in Bi2Sr2CaCu2O8 . Tech. Phys. 53, 466–471 (2008). https://doi.org/10.1134/S1063784208040129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784208040129

PACS numbers

Navigation