Skip to main content
Log in

The Additive Approximation for Heat Transfer and for Stability Calculations in a Multi-filamentary Superconductor - part A

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper addresses the applicability of the “additive approximation” of total thermal conductivity in heat transfer and in superconductor stability calculations. If cases (a), (b) and (c) denote total (conductive plus radiative), or only conductive or only radiative heat flux, respectively, each flux \( \dot{q} \) calculated with Fourier’s conduction law using the corresponding thermal conductivity (λa, λb, λc), the additive approximation would be confirmed if the heat flux difference Δ\( \dot{\mathrm{q}} \) = \( {\dot{\mathrm{q}}}_{\mathrm{a}}- \)\( {\dot{\mathrm{q}}}_{\mathrm{b}}- \)\( {\dot{\mathrm{q}}}_{\mathrm{c}} \), at any position of an investigated object, and at any time, converges to zero. This is not trivial because of the strong, non-linear temperature dependence of the radiation component. Heat transfer calculations including radiative transfer are presented in this paper, first for simple, homogeneous, thin film test samples and later for a multi-filamentary BSCCO 2223 superconductor. The simulated heat sources either result from a sudden increase of conductor boundary temperature or from flux flow and Ohmic resistances in the superconductor under a disturbance (like transport current exceeding critcal current density). The conductors, though very thin, are non-transparent to mid-IR radiation. Validity of the additive approximation is critical for superconductor stability against quench. Based on the applied numerical scheme, a hypothesis is suggested concerning correlation of the results of the simulation (the “numerical space”) with the experimental situation (the “physical reality”): Non-convergence of the numerical scheme might tightly be correlated with occurrence of a quench in the simulated superconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sparrow, E.M., Cess, R.D.: Radiation heat transfer. Brooks/Cole Publ. Co, Belmont/CA (1966)

    Google Scholar 

  2. Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. McGraw-Hill Kogakusha, Ltd., Int. Student Ed., Tokyo (1972)

    Google Scholar 

  3. Marzahn, E.: Supraleitende Kabelsysteme, Lecture (in German) given at the 2nd Braunschweiger Supraleiter Seminar. Technical University of Braunschweig - elenia, Germany (2007)

    Google Scholar 

  4. Tsotsas, E., Martin, H.: Thermal conductivity of packed beds: a review. Chem. Eng. Process. 22, 19–37 (1987)

    Article  Google Scholar 

  5. Vortmeyer, D.: Wärmestrahlung in dispersen Feststoffsystemen. Chem. Ing.Techn. 51, 839–851 (1979)

    Article  Google Scholar 

  6. Wakao, N., Kato, K.: Effective thermal conductivity of packed beds. J. Chem. Eng. Jpn. 2, 24–33 (1969)

    Article  Google Scholar 

  7. Chandrasekhar, S.: Radiative Transfer. Dover Publ. Inc., New York (1960)

    MATH  Google Scholar 

  8. Kourganoff, V., Busbridge, I.W.: Basic Methods in Transfer Problems, Radiative Equilibrium and Neutron Diffusion. Clarendon Press, Oxford (1952)

    MATH  Google Scholar 

  9. Hottel, H.C., Sarofim, A.F.: Radiative Transfer. McGraw-Hill Book Company, New York (1967)

    Google Scholar 

  10. Rosseland, S.: Astrophysik auf atomtheoretischer Grundlage. In: Born, M., Franck, J. (eds.) Struktur der Materie in Einzeldarstellungen. Verlag von Julius Springer, Berlin (1931)

    Google Scholar 

  11. van de Hulst, H.C.: Light scattering by small particles. Dover Publications, Inc., New York (1957) republished (1981)

    Google Scholar 

  12. Kerker, M.: The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York and London (1969)

    Google Scholar 

  13. Reiss, H.: Radiative transfer in nontransparent dispersed media. High Temp. High Press. 22, 481–522 (1990)

    Google Scholar 

  14. Reiss, H.: Radiative transfer, non-transparency, stability against quench in superconductors and their correlations. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4833-2

    Article  Google Scholar 

  15. Wilson, M.N.: Superconducting magnets. In: Scurlock, R.G. (ed.) Monographs on Cryogenics. Oxford University Press, New York, reprinted paperback (1989)

    Google Scholar 

  16. Dresner, L.: Stability of superconductors. In: Wolf, S. (ed.) Selected Topics in Superconductivity. Plenum Press, New York (1995)

    Google Scholar 

  17. Flik, M.L., Tien, C.L.: Intrinsic thermal stability of anisotropic thin-film superconductors. ASME Winter Ann. Meeting, Chikago (1988)

    Google Scholar 

  18. Rettelbach, T., Schmitz, G.J.: 3D simulation of temperature, electric field and current density evolution in superconducting components. Supercond. Sci. Technol. 16, 645–653 (2003)

    Article  ADS  Google Scholar 

  19. Reiss, H., Troitsky, O.Y.: Superconductor stability revisited: impacts from coupled conductive and thermal radiative transfer in the solid. J. Supercond. Nov. Magn. 27, 717–734 (2014)

    Article  Google Scholar 

  20. Reiss, H.: Inhomogeneous temperature fields, current distribution, stability and heat transfer in superconductor 1G multifilaments. J. Supercond. Nov. Magn. 29, 1449–1465 (2016)

    Article  Google Scholar 

  21. Reiss, H.: Finite element simulation of temperature and current distribution in a superconductor, and a cell model for flux flow resistivity – interim results. J. Supercond. Nov. Magn. 29, 1405–1422 (2016)

    Article  Google Scholar 

  22. Reiss, H.: A microscopic model of superconductor stability. J. Supercond. Nov. Magn. 26(3), 593–617 (2013)

    Article  Google Scholar 

  23. Reiss H, Wärmestrahlung – Superisolierungen. In: VDI e. V. (ed.) VDI Heat Atlas (in German), Chap. K6, 12th Edn. copyright Springer Verlag, Heidelberg (Germany) (2019) https://doi.org/10.1007/978-3-662-52991-1_73-1

    Google Scholar 

  24. Eschrig, H., Fink, J., Schultz, L.: 15 Jahre Hochtemperatur Supraleitung. Phys. J. 1(Nr. 1), 45–51 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Reiss.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiss, H. The Additive Approximation for Heat Transfer and for Stability Calculations in a Multi-filamentary Superconductor - part A. J Supercond Nov Magn 32, 3457–3472 (2019). https://doi.org/10.1007/s10948-019-5103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5103-7

Keywords

Navigation