Skip to main content
Log in

Diffusion model of internal friction in nanocrystalline materials

  • Solid-State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The stress normal and tangenital components arise in grain-boundary segments differently oriented with respect to an external periodic load, causing the fluxes of vacancies and impurity atoms between neighboring segments. By solving the diffusion problem, one can find the velocity of mutual displacement of grains, the stress distribution in the segments with allowance for stress adjustment, and the amount of internal friction. The frequency dependence of the internal friction shows peaks associated with the redistribution of impurity atoms over the segments, grain sliding, and a high-temperature background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Intense Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  2. R. A. Masumura and I. A. Ovid’ko, Mater. Phys. Mech. 1, 31 (2000).

    Google Scholar 

  3. A. A. Nazarov, Fiz. Tverd. Tela (St. Petersburg) 45, 1112 (2003) [Phys. Solid State 45, 1166 (2003)].

    Google Scholar 

  4. A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  5. V. M. Segal, V. I. Reznikov, V. I. Kopylov, and D. A. Pavlik, Plastic Structuring in Metals (Navuka i Tekhnika, Minsk, 1994) [in Russian].

    Google Scholar 

  6. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  Google Scholar 

  7. R. A. Andrievskiĭ and A. M. Glezer, Fiz. Met. Metalloved. 88, 50 (1999).

    Google Scholar 

  8. V. G. Gryaznov and L. I. Trusov, Prog. Mater. Sci. 37, 289 (1993).

    Article  Google Scholar 

  9. F. Tang, H. Tanhnoto, and S. Okuda, Nanostruct. Mater. 6, 563 (1995).

    Article  Google Scholar 

  10. W. N. Weins, J. D. Makinson, R. J. De Angelis, et al., Nanostruct. Mater. 9, 509 (1997).

    Article  Google Scholar 

  11. M. Yu. Gutkin and I. A. Ovidko, Usp. Mekh., No. 1, 68 (2003).

  12. E. Bonetti, L. Pasquini, and E. Sampaolesi, Nanostruct. Mater. 10, 437 (1998).

    Article  Google Scholar 

  13. B. Cai, Q. P. Kong, P. Cui, et al., Scr. Mater. 44, 1043 (2001).

    Article  Google Scholar 

  14. R. Mulyukov, M. Weller, R. Valiev, et al., Nanostruct. Mater. 6, 577 (1995).

    Article  Google Scholar 

  15. E. Bonetti, E. G. Campari, L. Del Bianco, et al., Nanostruct. Mater. 6, 639 (1995).

    Article  Google Scholar 

  16. V. P. Levin and V. B. Proskurin, Dislocation Inelasticity in Metals (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  17. V. G. Kulkov, Izv. Vyssh. Uchebn. Zaved., Fiz. 48(11), 39 (2005).

    Google Scholar 

  18. V. G. Kulkov, Kondens. Sredy Mezhfaznye Granitsy 3(1), 373 (2001).

    Google Scholar 

  19. A. S. Nowick and B. S. Berry, Inelastic Relaxation in Crystalline Solids (Academic, New York, 1972; Atomizdat, Moscow, 1975).

    Google Scholar 

  20. I. V. Zolotukhin and Yu. E. Kalinin, Fiz. Tverd. Tela (St. Petersburg) 37, 536 (1995) [Phys. Solid State 37, 290 (1995)].

    Google Scholar 

  21. V. G. Kul’kov and M. G. Zhikhareva, Deform. Razrush. Mater., No. 1, 46 (2005).

  22. V. G. Kul’kov, Pis’ma Zh. Tekh. Fiz. 31(8), 32 (2005) [Tech. Phys. Lett. 31, 329 (2005)].

    Google Scholar 

  23. V. N. Chuvildeev, Nonequilibrium Grain Boundaries in Metals: Theory and Application (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  24. Internal Friction in Materials Science, M. S. Blanter and Yu. V. Piguzov, Eds. (Metallurgiya, Moscow, 1991) [in Russian].

    Google Scholar 

  25. V. G. Kulkov, Izv. Vyssh. Uchebn. Zaved., Fiz. 48(4), 93 (2005).

    Google Scholar 

  26. V. N. Perevezentsev, V. V. Rybin, and V. N. Chuvildeev, Poverkhnost, No. 11, 101 (1985).

  27. B. M. Darinskiĭ and Yu. A. Fedorov, Fiz. Tverd. Tela (Leningrad) 34, 2053 (1992) [Sov. Phys. Solid State 34, 1097 (1992)].

    Google Scholar 

  28. B. M. Darinskiĭ and V. G. Kul’kov, Poverkhnost, No. 5, 153 (1993).

  29. V. G. Kul’kov, Vestn. Mosk. Energ. Inst., No. 5, 96 (2005).

  30. V. G. Kul’kov, Pis’ma Zh. Tekh. Fiz. 18(2), 65 (1992) [Sov. Tech. Phys. Lett. 18, 50 (1992)].

    Google Scholar 

  31. I. V. Zolotukhin, Yu. E. Kalinin, and N. P. Samtsova, Izv. Ross. Akad. Nauk, Ser. Fiz. 60(9), 134 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.G. Kul’kov, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 3, pp. 43–48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kul’kov, V.G. Diffusion model of internal friction in nanocrystalline materials. Tech. Phys. 52, 333–338 (2007). https://doi.org/10.1134/S1063784207030085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207030085

PACS numbers

Navigation